NumerischeApertur Lichtwellenleiter

Die maximale Auflösung ist der minimale Abstand zwischen zwei unterscheidbaren Strukturen . In der Mikroskopie ist die Größe des Fokus durch Beugung begrenzt und proportional zur Wellenlänge des verwendeten Lichtes sowie umgekehrt proportional zur numerischen Apertur:

Auch bei Lichtwellenleitern wird die numerische Apertur beschrieben durch den Sinus des Akzeptanzwinkels (manchmal auch Kollimations-/Divergenzwinkel) der Faser und entspricht der Öffnung des kegelförmigen Lichtbündels, das aus der Endfläche der Faser wieder austritt.

NumerischeApertur Rechner

Even though infrared radiation cannot be seen by the human eye, it can definitely be felt. Infrared energy is felt as heat because it interacts with molecules by exciting them, causing them to move faster which increases the internal temperature of the object absorbing the infrared energy. Although all wavelengths of radiant energy will heat surfaces that absorb them, infrared radiation is most common in daily life because of the "ordinary" objects that emit it as radiant heat (see blackbody radiation and Wien's Law for more information on this).[3] For example, humans at a temperature of 37°C[4] emit most of their radiant heat in the infrared range, as can be seen in Figure 1.

Around 50% of the Sun's energy to the Earth is in the form of infrared,[6] therefore the balance of this radiation in the atmosphere is crucial to keep a stable temperature and climate. Carbon dioxide in the atmosphere produces a greenhouse effect, because CO2 is able to absorb and re-emit infrared radiation as seen in Figure 2, unlike the gasses that make up most of the atmosphere (molecular oxygen, O2 about 21% and nitrogen, N2, about 78%).[7] This greenhouse effect is necessary for the livable temperatures on Earth, however an increasing level of greenhouse gases is contributing to an unstable warming of the Earth which is a cause for great concern. Read more about this imbalance here.

NumerischeApertur Laser

Die numerische Apertur ergibt sich aus dem Produkt des Sinus des halben objektseitigen Öffnungswinkels (Akzeptanzwinkel) und dem Brechungsindex n des Materials zwischen Objektiv und Fokus (siehe auch Immersion (Mikroskopie)):

Mathematisch richtig wird der Öffnungswinkel durch eine Blende in der hinteren Brennebene des Objektivs bestimmt. Bautechnisch ist aber die Fassung der ersten Linse limitierend; dies ist näherungsweise auch richtig, wie im Rahmen der Fraunhofer-Beugung erläutert wird.

NumerischeApertur LWL

Ein optisches Element, z.B. ein Objektiv, wird charakterisiert durch seine Vergrößerung, seine numerische Apertur, den optischen Arbeitsabstand und den rückwärtigen Abbildungsabstand.

Bei optischen Abbildungen sind häufig andere Effekte wie Aberrationen oder andere Abbildungsfehler so groß, dass das über die numerische Apertur berechenbare theoretisch mögliche Auflösungsvermögen nicht erreicht werden kann. Als Kompromiss wird hierbei häufig die kritische Blende eingestellt, bei der bei einem vorgegebenen Objektiv in der Praxis das größte Auflösungsvermögen erreicht werden kann.

In Luft mit (z.B. bei einem Fernrohr) ist die numerische Apertur immer kleiner als eins. Sie kann aber Werte größer als eins annehmen, wenn der Raum zwischen zu mikroskopierender Probe und Mikroskop-Objektiv mit einer Immersionsflüssigkeit gefüllt wird, deren Brechungsindex größer ist als eins; häufig wird Wasser (), Glycerin () oder Öl () benutzt. Bei Mikroskopen steigt die numerische Apertur in der Regel mit der Vergrößerungszahl des Objektivs, die starkvergrößernden Objektive (90x, 100x, bei hochauflösenden Objektiven auch 40x und 60x) brauchen dementsprechend Immersionsflüssigkeit zwischen Objektiv und Objekt (Deckglas).

Ähnlich ist es in der Fotografie, wo anstelle der numerischen Apertur häufig das Öffnungsverhältnis angegeben wird. Dieses bezieht sich jedoch – anders als die numerische Apertur – auf den bildseitigen Öffnungswinkel (siehe Öffnungsverhältnis und Blendenzahl).

Die numerische Apertur (Formelzeichen , NA oder n.A., von lateinisch apertus, dt. offen) ist eine dimensionslose Größe, die das Vermögen eines optischen Elements beschreibt, Licht zu fokussieren. Der Begriff wurde vom Physiker Ernst Abbe eingeführt.

NumerischeApertur Auflösung

NumerischeApertur einfach erklärt

Bei einem Objektiv bestimmt die numerische Apertur die minimale Größe des Lichtflecks, der in seinem Fokus erzeugt werden kann; eine große numerische Apertur ist gut für das Auflösungsvermögen.

Infrared radiation (IR) is a type of radiant energy, with longer wavelengths than the visible light humans can see, but shorter wavelengths than radio waves. Its range extends from fairly small wavelengths near the color red, 700x10-9 m, to nearly a millimeter, 3x10-4 m.[2]

Since the infrared spectrum is of lower energy than visible light, this limits the amount of solar energy that can be harnessed with standard photovoltaic cells.

Die Auflösung kann über die Beugungsgrenze hinaus erhöht werden durch Ausnutzen nichtlinearer Reaktionen der Moleküle, z.B. bei den Analysemethoden STORM, dSTORM, STED oder (f)PALM.