What's the Difference Between Polarized and Non- ... - polarized meaning
Magnetic solid-phase extraction of tetracyclines using ferrous oxide coated magnetic silica microspheres from water samples.
Based on this understanding, ND filters help us in at least three situations: (1) reduce the intensity of light; (2) use slower shutter speed; and (3) use larger aperture. We shall discuss each of these situation briefly below. Reducing the Intensity of Light Nikon Coolpix 950, 990 and 995 have smallest aperture (resp., fastest shutter speed) f11.4, f11 and f10.3 (resp., 1/750, 1/1000 and 1/2000). Occasionally, it is possible that a correct exposure cannot be achieved even with the smallest aperture and fastest shutter speed. In such cases, ND filters become useful, because they can reduce the intensity of the light so that a photo can be taken within the limit of your camera. This is actually a common situation when film cameras and high speed films are used. Using Slower Shutter Speed Reducing the intensity of light means we can either use a slower shutter speed or a larger aperture. A slower shutter speed can cause moving objects blurred (i.e., motion blur) which creates a sense of motion. The following images were taken using the Aperture-Priority Mode (950, 990 and 995). The aperture was set to F2.8, the largest possible aperture, so that shutter speed can be reduced properly. The left image below was taken without a ND filter, and, as you can see, the truck (running about 40 miles) is frozen. Adding a ND4 filter to reduce 2 stops (i.e., slowing the shutter speed to a quarter of that used for the left image), the vehicle shows motion blur (middle image below). Motion blur becomes even more significant if ND8 is used instead of ND4 (right image below) which reduces the shutter speed to 1/8 of that used for the left image. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
Information on toxicological effectsAcute toxicity:The Registry of Toxic Effects of Chemical Substances (RTECS) contains acute toxicity data for this substance.LD/LC50 values that are relevant for classification:No dataSkin irritation or corrosion:May cause irritationEye irritation or corrosion:May cause irritationSensitization:No sensitizing effects known.Germ cell mutagenicity:The Registry of Toxic Effects of Chemical Substances (RTECS) contains mutation data for this substance.Carcinogenicity:May cause cancer.IARC-1: Carcinogenic to humans: sufficient evidence of carcinogenicity.ACGIH A2: Suspected human carcinogen: Agent is carcinogenic in experimental animals at dose levels, by route(s) of administration, at site(s), of histologic type(s),or by mechanism(s) considered relevant to worker exposure. Available epidemiologic studies are conflicting or insufficient toconfirm an increased risk of cancer in exposed humans.NTP-K: Known to be carcinogenic: sufficient evidence from human studies.The Registry of Toxic Effects of Chemical Substances (RTECS) contains tumorigenic and/or carcinogenic and/or neoplastic data for this substance.Reproductive toxicity:No effects known.Specific target organ system toxicity - repeated exposure:May cause damage to the lung, the spleen, the blood and the endocrine system through prolonged or repeated exposure. Route of exposure: Inhalative.Specific target organ system toxicity - single exposure:No effects known.Aspiration hazard:No effects known.Subacute to chronic toxicity:The Registry of Toxic Effects of Chemical Substances (RTECS) contains multiple dose toxicity data for this substance.Additional toxicological information:To the best of our knowledge the acute and chronic toxicity of this substance is not fully known.
Nd filter what isphotography
Reducing the intensity of light means we can either use a slower shutter speed or a larger aperture. A slower shutter speed can cause moving objects blurred (i.e., motion blur) which creates a sense of motion. The following images were taken using the Aperture-Priority Mode (950, 990 and 995). The aperture was set to F2.8, the largest possible aperture, so that shutter speed can be reduced properly. The left image below was taken without a ND filter, and, as you can see, the truck (running about 40 miles) is frozen. Adding a ND4 filter to reduce 2 stops (i.e., slowing the shutter speed to a quarter of that used for the left image), the vehicle shows motion blur (middle image below). Motion blur becomes even more significant if ND8 is used instead of ND4 (right image below) which reduces the shutter speed to 1/8 of that used for the left image. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
Influence of polyvinylpyrrolidone, microcrystalline cellulose and colloidal silicon dioxide on technological characteristics of a high-dose Petiveria alliacea tablet.
HandlingPrecautions for safe handlingKeep container tightly sealed.Store in cool, dry place in tightly closed containers.Ensure good ventilation at the workplace.Open and handle container with care.Information about protection against explosions and fires:The product is not flammableConditions for safe storage, including any incompatibilitiesRequirements to be met by storerooms and receptacles:No special requirements.Information about storage in one common storage facility:No data availableFurther information about storage conditions:Keep container tightly sealed.Store in cool, dry conditions in well-sealed containers.Specific end use(s)No data available
ToxicityAquatic toxicity:No data availablePersistence and degradabilityNo data availableBioaccumulative potentialNo data availableMobility in soilNo data availableAdditional ecological information:Do not allow material to be released to the environment without official permits.Avoid transfer into the environment.Results of PBT and vPvB assessmentPBT:N/AvPvB:N/AOther adverse effectsNo data available
ND filterchart
Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
ND Filterfor Mobile
Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
UN-NumberDOT, ADN, IMDG, IATAN/AUN proper shipping nameDOT, ADN, IMDG, IATAN/ATransport hazard class(es)DOT, ADR, ADN, IMDG, IATAClassN/APacking groupDOT, IMDG, IATAN/AEnvironmental hazards:N/ASpecial precautions for userN/ATransport in bulk according to Annex II of MARPOL73/78 and the IBC CodeN/ATransport/Additional information:DOTMarine Pollutant (DOT):No
Product Number: All applicable American Elements product codes, e.g. SIO-QTZ-02-R , SIO-QTZ-03-R , SIO-QTZ-04-R , SIO-QTZ-02-R
Additional information about design of technical systems:Properly operating chemical fume hood designed for hazardous chemicals and having an average face velocity of at least 100 feet per minute.Control parametersComponents with limit values that require monitoring at the workplace:14808-60-7 Silicon(IV) oxide (100.0%)PEL (USA) see Quartz listingREL (USA) Long-term value: 0.05* mg/m3*respirable dust; See Pocket Guide App. ATLV (USA) Long-term value: 0.025* mg/m3*as respirable fractionEL (Canada) Long-term value: 0.025 mg/m3ACGIH A2; IARC 1EV (Canada) Long-term value: 0.10* mg/m3*respirable fractionAdditional information:No dataExposure controlsPersonal protective equipmentFollow typical protective and hygienic practices for handling chemicals.Keep away from foodstuffs, beverages and feed.Remove all soiled and contaminated clothing immediately.Wash hands before breaks and at the end of work.Store protective clothing separately.Maintain an ergonomically appropriate working environment.Breathing equipment:Use suitable respirator when high concentrations are present.Recommended filter device for short term use:Use a respirator with type P100 (USA) or P3 (EN 143) cartridges as a backup to engineering controls. Risk assessment should be performed to determine if air-purifying respirators are appropriate. Only use equipment tested and approved under appropriate government standards.Protection of hands:Impervious glovesInspect gloves prior to use.Suitability of gloves should be determined both by material and quality, the latter of which may vary by manufacturer.Material of glovesNitrile rubber, NBRPenetration time of glove material (in minutes)No data availableEye protection:Safety glassesBody protection:Protective work clothing
When to use anND filterfor video
ReactivityNo data availableChemical stabilityStable under recommended storage conditions.Thermal decomposition / conditions to be avoided:Decomposition will not occur if used and stored according to specifications.Possibility of hazardous reactionsNo dangerous reactions knownConditions to avoidNo data availableIncompatible materials:No data availableHazardous decomposition products:Silicon oxide
For example, Tiffen and B+W have 0.3, 0.6 and 0.9 ND filters for reducing one, two and three stops of light. Hoya, on the other hand, uses 2×, 4× and 8× to indicate reducing 1 (i.e. 2=21), 2 (i.e., 4=22), and 3 (i.e., 8=23) stops. The two ND filters come with Nikon's Coolpack are of ND4 and ND8 type, which means they reduce two and three stops, respectively. All ND filters are gray in color. The deeper the color, the stronger the effect (i.e., reducing more light). The following shows Nikon's ND4 (font) and ND8 (rear) filters. From the shadows, it is clear that a ND8 blocks more light than a ND4 does. Based on this understanding, ND filters help us in at least three situations: (1) reduce the intensity of light; (2) use slower shutter speed; and (3) use larger aperture. We shall discuss each of these situation briefly below. Reducing the Intensity of Light Nikon Coolpix 950, 990 and 995 have smallest aperture (resp., fastest shutter speed) f11.4, f11 and f10.3 (resp., 1/750, 1/1000 and 1/2000). Occasionally, it is possible that a correct exposure cannot be achieved even with the smallest aperture and fastest shutter speed. In such cases, ND filters become useful, because they can reduce the intensity of the light so that a photo can be taken within the limit of your camera. This is actually a common situation when film cameras and high speed films are used. Using Slower Shutter Speed Reducing the intensity of light means we can either use a slower shutter speed or a larger aperture. A slower shutter speed can cause moving objects blurred (i.e., motion blur) which creates a sense of motion. The following images were taken using the Aperture-Priority Mode (950, 990 and 995). The aperture was set to F2.8, the largest possible aperture, so that shutter speed can be reduced properly. The left image below was taken without a ND filter, and, as you can see, the truck (running about 40 miles) is frozen. Adding a ND4 filter to reduce 2 stops (i.e., slowing the shutter speed to a quarter of that used for the left image), the vehicle shows motion blur (middle image below). Motion blur becomes even more significant if ND8 is used instead of ND4 (right image below) which reduces the shutter speed to 1/8 of that used for the left image. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
Waste treatment methodsRecommendationConsult official regulations to ensure proper disposal.Uncleaned packagings:Recommendation:Disposal must be made according to official regulations.
Description of first aid measuresIf inhaled:Supply patient with fresh air. If not breathing, provide artificial respiration. Keep patient warm.Seek immediate medical advice.In case of skin contact:Immediately wash with soap and water; rinse thoroughly.Seek immediate medical advice.In case of eye contact:Rinse opened eye for several minutes under running water. Consult a physician.If swallowed:Seek medical treatment.Information for doctorMost important symptoms and effects, both acute and delayedNo data availableIndication of any immediate medical attention and special treatment neededNo data available
ND filtercalculator
The main purpose of using neutral density (i.e., ND) filters is to reduce the amount of light that can pass through the lens. As a result, if a shutter speed is kept the same, after adding a neutral density filter, a larger aperture must be used to obtain the same exposure. Similarly, if an aperture is kept the same, after adding a neutral density filter, a slower shutter speed must be used to obtain the same exposure. This can be seen in the following diagram. Note that this diagram was discussed in the Program Mode (950, 990 and 995). Recall that the thick red line indicates a constant exposure value (i.e., EV). To achieve this "correct" exposure, there are many different aperture-shutter speed combinations. After adding a ND filter, the exposure value is reduced because there is less light passing through the lens. This is shown as a dashed line in the above figure. Thus, if we want to keep the original shutter speed (without using a ND filter), aperture has to be wider; or, if we want to keep the original aperture, shutter speed must be slower. Different ND filter manufacture many use a different way to indicate the amount of light a ND filter can reduce. There are two typical systems as shown below: Density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 Reduction by f-stops 1/3 2/3 1 1 1/3 1 2/3 2 2 1/3 2 2/3 3 3 1/3 6 2/3 10 13 1/3 For example, Tiffen and B+W have 0.3, 0.6 and 0.9 ND filters for reducing one, two and three stops of light. Hoya, on the other hand, uses 2×, 4× and 8× to indicate reducing 1 (i.e. 2=21), 2 (i.e., 4=22), and 3 (i.e., 8=23) stops. The two ND filters come with Nikon's Coolpack are of ND4 and ND8 type, which means they reduce two and three stops, respectively. All ND filters are gray in color. The deeper the color, the stronger the effect (i.e., reducing more light). The following shows Nikon's ND4 (font) and ND8 (rear) filters. From the shadows, it is clear that a ND8 blocks more light than a ND4 does. Based on this understanding, ND filters help us in at least three situations: (1) reduce the intensity of light; (2) use slower shutter speed; and (3) use larger aperture. We shall discuss each of these situation briefly below. Reducing the Intensity of Light Nikon Coolpix 950, 990 and 995 have smallest aperture (resp., fastest shutter speed) f11.4, f11 and f10.3 (resp., 1/750, 1/1000 and 1/2000). Occasionally, it is possible that a correct exposure cannot be achieved even with the smallest aperture and fastest shutter speed. In such cases, ND filters become useful, because they can reduce the intensity of the light so that a photo can be taken within the limit of your camera. This is actually a common situation when film cameras and high speed films are used. Using Slower Shutter Speed Reducing the intensity of light means we can either use a slower shutter speed or a larger aperture. A slower shutter speed can cause moving objects blurred (i.e., motion blur) which creates a sense of motion. The following images were taken using the Aperture-Priority Mode (950, 990 and 995). The aperture was set to F2.8, the largest possible aperture, so that shutter speed can be reduced properly. The left image below was taken without a ND filter, and, as you can see, the truck (running about 40 miles) is frozen. Adding a ND4 filter to reduce 2 stops (i.e., slowing the shutter speed to a quarter of that used for the left image), the vehicle shows motion blur (middle image below). Motion blur becomes even more significant if ND8 is used instead of ND4 (right image below) which reduces the shutter speed to 1/8 of that used for the left image. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
Information on basic physical and chemical propertiesAppearance:Form: Powder or SolidColor: ColorlessOdor: OdorlessOdor threshold: No data available.pH: N/AMelting point/Melting range: 1710 °C (3110 °F)Boiling point/Boiling range: 2230 °C (4046 °F)Sublimation temperature / start: No data availableFlammability (solid, gas)No data available.Ignition temperature: No data availableDecomposition temperature: No data availableAutoignition: No data available.Danger of explosion: No data available.Explosion limits:Lower: No data availableUpper: No data availableVapor pressure: N/ADensity: No data availableRelative densityNo data available.Vapor densityN/AEvaporation rateN/ASolubility in Water (H2O): InsolublePartition coefficient (n-octanol/water): No data available.Viscosity:Dynamic: N/AKinematic: N/AOther informationNo data available
Based on this understanding, ND filters help us in at least three situations: (1) reduce the intensity of light; (2) use slower shutter speed; and (3) use larger aperture. We shall discuss each of these situation briefly below. Reducing the Intensity of Light Nikon Coolpix 950, 990 and 995 have smallest aperture (resp., fastest shutter speed) f11.4, f11 and f10.3 (resp., 1/750, 1/1000 and 1/2000). Occasionally, it is possible that a correct exposure cannot be achieved even with the smallest aperture and fastest shutter speed. In such cases, ND filters become useful, because they can reduce the intensity of the light so that a photo can be taken within the limit of your camera. This is actually a common situation when film cameras and high speed films are used. Using Slower Shutter Speed Reducing the intensity of light means we can either use a slower shutter speed or a larger aperture. A slower shutter speed can cause moving objects blurred (i.e., motion blur) which creates a sense of motion. The following images were taken using the Aperture-Priority Mode (950, 990 and 995). The aperture was set to F2.8, the largest possible aperture, so that shutter speed can be reduced properly. The left image below was taken without a ND filter, and, as you can see, the truck (running about 40 miles) is frozen. Adding a ND4 filter to reduce 2 stops (i.e., slowing the shutter speed to a quarter of that used for the left image), the vehicle shows motion blur (middle image below). Motion blur becomes even more significant if ND8 is used instead of ND4 (right image below) which reduces the shutter speed to 1/8 of that used for the left image. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
Quantitative differentiation of multiple virus in blood using nanoporous silicon oxide immunosensor and artificial neural network.
Safety Data Sheet according to Regulation (EC) No. 1907/2006 (REACH). The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. American Elements shall not be held liable for any damage resulting from handling or from contact with the above product. See reverse side of invoice or packing slip for additional terms and conditions of sale. COPYRIGHT 1997-2022 AMERICAN ELEMENTS. LICENSED GRANTED TO MAKE UNLIMITED PAPER COPIES FOR INTERNAL USE ONLY.
Silica coating followed by heat-treatment of MDP-primer for resin bond stability to yttria-stabilized zirconia polycrystals.
Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
Density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 Reduction by f-stops 1/3 2/3 1 1 1/3 1 2/3 2 2 1/3 2 2/3 3 3 1/3 6 2/3 10 13 1/3 For example, Tiffen and B+W have 0.3, 0.6 and 0.9 ND filters for reducing one, two and three stops of light. Hoya, on the other hand, uses 2×, 4× and 8× to indicate reducing 1 (i.e. 2=21), 2 (i.e., 4=22), and 3 (i.e., 8=23) stops. The two ND filters come with Nikon's Coolpack are of ND4 and ND8 type, which means they reduce two and three stops, respectively. All ND filters are gray in color. The deeper the color, the stronger the effect (i.e., reducing more light). The following shows Nikon's ND4 (font) and ND8 (rear) filters. From the shadows, it is clear that a ND8 blocks more light than a ND4 does. Based on this understanding, ND filters help us in at least three situations: (1) reduce the intensity of light; (2) use slower shutter speed; and (3) use larger aperture. We shall discuss each of these situation briefly below. Reducing the Intensity of Light Nikon Coolpix 950, 990 and 995 have smallest aperture (resp., fastest shutter speed) f11.4, f11 and f10.3 (resp., 1/750, 1/1000 and 1/2000). Occasionally, it is possible that a correct exposure cannot be achieved even with the smallest aperture and fastest shutter speed. In such cases, ND filters become useful, because they can reduce the intensity of the light so that a photo can be taken within the limit of your camera. This is actually a common situation when film cameras and high speed films are used. Using Slower Shutter Speed Reducing the intensity of light means we can either use a slower shutter speed or a larger aperture. A slower shutter speed can cause moving objects blurred (i.e., motion blur) which creates a sense of motion. The following images were taken using the Aperture-Priority Mode (950, 990 and 995). The aperture was set to F2.8, the largest possible aperture, so that shutter speed can be reduced properly. The left image below was taken without a ND filter, and, as you can see, the truck (running about 40 miles) is frozen. Adding a ND4 filter to reduce 2 stops (i.e., slowing the shutter speed to a quarter of that used for the left image), the vehicle shows motion blur (middle image below). Motion blur becomes even more significant if ND8 is used instead of ND4 (right image below) which reduces the shutter speed to 1/8 of that used for the left image. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
Different ND filter manufacture many use a different way to indicate the amount of light a ND filter can reduce. There are two typical systems as shown below: Density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 Reduction by f-stops 1/3 2/3 1 1 1/3 1 2/3 2 2 1/3 2 2/3 3 3 1/3 6 2/3 10 13 1/3 For example, Tiffen and B+W have 0.3, 0.6 and 0.9 ND filters for reducing one, two and three stops of light. Hoya, on the other hand, uses 2×, 4× and 8× to indicate reducing 1 (i.e. 2=21), 2 (i.e., 4=22), and 3 (i.e., 8=23) stops. The two ND filters come with Nikon's Coolpack are of ND4 and ND8 type, which means they reduce two and three stops, respectively. All ND filters are gray in color. The deeper the color, the stronger the effect (i.e., reducing more light). The following shows Nikon's ND4 (font) and ND8 (rear) filters. From the shadows, it is clear that a ND8 blocks more light than a ND4 does. Based on this understanding, ND filters help us in at least three situations: (1) reduce the intensity of light; (2) use slower shutter speed; and (3) use larger aperture. We shall discuss each of these situation briefly below. Reducing the Intensity of Light Nikon Coolpix 950, 990 and 995 have smallest aperture (resp., fastest shutter speed) f11.4, f11 and f10.3 (resp., 1/750, 1/1000 and 1/2000). Occasionally, it is possible that a correct exposure cannot be achieved even with the smallest aperture and fastest shutter speed. In such cases, ND filters become useful, because they can reduce the intensity of the light so that a photo can be taken within the limit of your camera. This is actually a common situation when film cameras and high speed films are used. Using Slower Shutter Speed Reducing the intensity of light means we can either use a slower shutter speed or a larger aperture. A slower shutter speed can cause moving objects blurred (i.e., motion blur) which creates a sense of motion. The following images were taken using the Aperture-Priority Mode (950, 990 and 995). The aperture was set to F2.8, the largest possible aperture, so that shutter speed can be reduced properly. The left image below was taken without a ND filter, and, as you can see, the truck (running about 40 miles) is frozen. Adding a ND4 filter to reduce 2 stops (i.e., slowing the shutter speed to a quarter of that used for the left image), the vehicle shows motion blur (middle image below). Motion blur becomes even more significant if ND8 is used instead of ND4 (right image below) which reduces the shutter speed to 1/8 of that used for the left image. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
Classification of the substance or mixtureClassification according to Regulation (EC) No 1272/2008GHS08 Health hazardCarc. 1B H350 May cause cancer.STOT RE 2 H373 May cause damage to the lung, the spleen, the blood and the endocrine system through prolonged or repeated exposure. Route of exposure:Inhalative.Classification according to Directive 67/548/EEC or Directive 1999/45/ECT; ToxicR49: May cause cancer by inhalation.Xn; HarmfulR48/20: Harmful: danger of serious damage to health by prolonged exposure through inhalation.Information concerning particular hazards for human and environment:N/AHazards not otherwise classifiedNo data availableLabel elementsLabelling according to Regulation (EC) No 1272/2008The substance is classified and labeled according to the CLP regulation.Hazard pictograms
See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. The number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Silica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.
Extinguishing mediaSuitable extinguishing agentsProduct is not flammable. Use fire-fighting measures that suit the surrounding fire.Special hazards arising from the substance or mixtureIf this product is involved in a fire, the following can be released:Silicon oxideAdvice for firefightersProtective equipment:Wear self-contained respirator.Wear fully protective impervious suit.
VariableND Filter
Highly ordered macroporous silica dioxide framework embedded with supramolecular as robust recognition agent for removal of cesium.
Nikon Coolpix 950, 990 and 995 have smallest aperture (resp., fastest shutter speed) f11.4, f11 and f10.3 (resp., 1/750, 1/1000 and 1/2000). Occasionally, it is possible that a correct exposure cannot be achieved even with the smallest aperture and fastest shutter speed. In such cases, ND filters become useful, because they can reduce the intensity of the light so that a photo can be taken within the limit of your camera. This is actually a common situation when film cameras and high speed films are used. Using Slower Shutter Speed Reducing the intensity of light means we can either use a slower shutter speed or a larger aperture. A slower shutter speed can cause moving objects blurred (i.e., motion blur) which creates a sense of motion. The following images were taken using the Aperture-Priority Mode (950, 990 and 995). The aperture was set to F2.8, the largest possible aperture, so that shutter speed can be reduced properly. The left image below was taken without a ND filter, and, as you can see, the truck (running about 40 miles) is frozen. Adding a ND4 filter to reduce 2 stops (i.e., slowing the shutter speed to a quarter of that used for the left image), the vehicle shows motion blur (middle image below). Motion blur becomes even more significant if ND8 is used instead of ND4 (right image below) which reduces the shutter speed to 1/8 of that used for the left image. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
How many stopsND filterfor video
Recall that the thick red line indicates a constant exposure value (i.e., EV). To achieve this "correct" exposure, there are many different aperture-shutter speed combinations. After adding a ND filter, the exposure value is reduced because there is less light passing through the lens. This is shown as a dashed line in the above figure. Thus, if we want to keep the original shutter speed (without using a ND filter), aperture has to be wider; or, if we want to keep the original aperture, shutter speed must be slower. Different ND filter manufacture many use a different way to indicate the amount of light a ND filter can reduce. There are two typical systems as shown below: Density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 Reduction by f-stops 1/3 2/3 1 1 1/3 1 2/3 2 2 1/3 2 2/3 3 3 1/3 6 2/3 10 13 1/3 For example, Tiffen and B+W have 0.3, 0.6 and 0.9 ND filters for reducing one, two and three stops of light. Hoya, on the other hand, uses 2×, 4× and 8× to indicate reducing 1 (i.e. 2=21), 2 (i.e., 4=22), and 3 (i.e., 8=23) stops. The two ND filters come with Nikon's Coolpack are of ND4 and ND8 type, which means they reduce two and three stops, respectively. All ND filters are gray in color. The deeper the color, the stronger the effect (i.e., reducing more light). The following shows Nikon's ND4 (font) and ND8 (rear) filters. From the shadows, it is clear that a ND8 blocks more light than a ND4 does. Based on this understanding, ND filters help us in at least three situations: (1) reduce the intensity of light; (2) use slower shutter speed; and (3) use larger aperture. We shall discuss each of these situation briefly below. Reducing the Intensity of Light Nikon Coolpix 950, 990 and 995 have smallest aperture (resp., fastest shutter speed) f11.4, f11 and f10.3 (resp., 1/750, 1/1000 and 1/2000). Occasionally, it is possible that a correct exposure cannot be achieved even with the smallest aperture and fastest shutter speed. In such cases, ND filters become useful, because they can reduce the intensity of the light so that a photo can be taken within the limit of your camera. This is actually a common situation when film cameras and high speed films are used. Using Slower Shutter Speed Reducing the intensity of light means we can either use a slower shutter speed or a larger aperture. A slower shutter speed can cause moving objects blurred (i.e., motion blur) which creates a sense of motion. The following images were taken using the Aperture-Priority Mode (950, 990 and 995). The aperture was set to F2.8, the largest possible aperture, so that shutter speed can be reduced properly. The left image below was taken without a ND filter, and, as you can see, the truck (running about 40 miles) is frozen. Adding a ND4 filter to reduce 2 stops (i.e., slowing the shutter speed to a quarter of that used for the left image), the vehicle shows motion blur (middle image below). Motion blur becomes even more significant if ND8 is used instead of ND4 (right image below) which reduces the shutter speed to 1/8 of that used for the left image. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
ND filtervs polarizer
Recall that the thick red line indicates a constant exposure value (i.e., EV). To achieve this "correct" exposure, there are many different aperture-shutter speed combinations. After adding a ND filter, the exposure value is reduced because there is less light passing through the lens. This is shown as a dashed line in the above figure. Thus, if we want to keep the original shutter speed (without using a ND filter), aperture has to be wider; or, if we want to keep the original aperture, shutter speed must be slower. Different ND filter manufacture many use a different way to indicate the amount of light a ND filter can reduce. There are two typical systems as shown below: Density 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 Reduction by f-stops 1/3 2/3 1 1 1/3 1 2/3 2 2 1/3 2 2/3 3 3 1/3 6 2/3 10 13 1/3 For example, Tiffen and B+W have 0.3, 0.6 and 0.9 ND filters for reducing one, two and three stops of light. Hoya, on the other hand, uses 2×, 4× and 8× to indicate reducing 1 (i.e. 2=21), 2 (i.e., 4=22), and 3 (i.e., 8=23) stops. The two ND filters come with Nikon's Coolpack are of ND4 and ND8 type, which means they reduce two and three stops, respectively. All ND filters are gray in color. The deeper the color, the stronger the effect (i.e., reducing more light). The following shows Nikon's ND4 (font) and ND8 (rear) filters. From the shadows, it is clear that a ND8 blocks more light than a ND4 does. Based on this understanding, ND filters help us in at least three situations: (1) reduce the intensity of light; (2) use slower shutter speed; and (3) use larger aperture. We shall discuss each of these situation briefly below. Reducing the Intensity of Light Nikon Coolpix 950, 990 and 995 have smallest aperture (resp., fastest shutter speed) f11.4, f11 and f10.3 (resp., 1/750, 1/1000 and 1/2000). Occasionally, it is possible that a correct exposure cannot be achieved even with the smallest aperture and fastest shutter speed. In such cases, ND filters become useful, because they can reduce the intensity of the light so that a photo can be taken within the limit of your camera. This is actually a common situation when film cameras and high speed films are used. Using Slower Shutter Speed Reducing the intensity of light means we can either use a slower shutter speed or a larger aperture. A slower shutter speed can cause moving objects blurred (i.e., motion blur) which creates a sense of motion. The following images were taken using the Aperture-Priority Mode (950, 990 and 995). The aperture was set to F2.8, the largest possible aperture, so that shutter speed can be reduced properly. The left image below was taken without a ND filter, and, as you can see, the truck (running about 40 miles) is frozen. Adding a ND4 filter to reduce 2 stops (i.e., slowing the shutter speed to a quarter of that used for the left image), the vehicle shows motion blur (middle image below). Motion blur becomes even more significant if ND8 is used instead of ND4 (right image below) which reduces the shutter speed to 1/8 of that used for the left image. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
All ND filters are gray in color. The deeper the color, the stronger the effect (i.e., reducing more light). The following shows Nikon's ND4 (font) and ND8 (rear) filters. From the shadows, it is clear that a ND8 blocks more light than a ND4 does. Based on this understanding, ND filters help us in at least three situations: (1) reduce the intensity of light; (2) use slower shutter speed; and (3) use larger aperture. We shall discuss each of these situation briefly below. Reducing the Intensity of Light Nikon Coolpix 950, 990 and 995 have smallest aperture (resp., fastest shutter speed) f11.4, f11 and f10.3 (resp., 1/750, 1/1000 and 1/2000). Occasionally, it is possible that a correct exposure cannot be achieved even with the smallest aperture and fastest shutter speed. In such cases, ND filters become useful, because they can reduce the intensity of the light so that a photo can be taken within the limit of your camera. This is actually a common situation when film cameras and high speed films are used. Using Slower Shutter Speed Reducing the intensity of light means we can either use a slower shutter speed or a larger aperture. A slower shutter speed can cause moving objects blurred (i.e., motion blur) which creates a sense of motion. The following images were taken using the Aperture-Priority Mode (950, 990 and 995). The aperture was set to F2.8, the largest possible aperture, so that shutter speed can be reduced properly. The left image below was taken without a ND filter, and, as you can see, the truck (running about 40 miles) is frozen. Adding a ND4 filter to reduce 2 stops (i.e., slowing the shutter speed to a quarter of that used for the left image), the vehicle shows motion blur (middle image below). Motion blur becomes even more significant if ND8 is used instead of ND4 (right image below) which reduces the shutter speed to 1/8 of that used for the left image. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
Silica/graphene oxide nanocomposites: Potential adsorbents for solid phase extraction of trace aflatoxins in cereal crops coupled with high performance liquid chromatography.
Using Slower Shutter Speed Reducing the intensity of light means we can either use a slower shutter speed or a larger aperture. A slower shutter speed can cause moving objects blurred (i.e., motion blur) which creates a sense of motion. The following images were taken using the Aperture-Priority Mode (950, 990 and 995). The aperture was set to F2.8, the largest possible aperture, so that shutter speed can be reduced properly. The left image below was taken without a ND filter, and, as you can see, the truck (running about 40 miles) is frozen. Adding a ND4 filter to reduce 2 stops (i.e., slowing the shutter speed to a quarter of that used for the left image), the vehicle shows motion blur (middle image below). Motion blur becomes even more significant if ND8 is used instead of ND4 (right image below) which reduces the shutter speed to 1/8 of that used for the left image. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
Facile meltPEGylation of flame-made luminescent Tb-doped yttrium oxide particles: hemocompatibility, cellular uptake and comparison to silica.
Personal precautions, protective equipment and emergency proceduresUse personal protective equipment. Keep unprotected persons away.Ensure adequate ventilationEnvironmental precautions:Do not allow material to be released to the environment without official permits.Do not allow product to enter drains, sewage systems, or other water courses.Do not allow material to penetrate the ground or soil.Methods and materials for containment and cleanup:Dispose of contaminated material as waste according to section 13.Ensure adequate ventilation.Prevention of secondary hazards:No special measures required.Reference to other sectionsSee Section 7 for information on safe handlingSee Section 8 for information on personal protection equipment.See Section 13 for disposal information.
With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
Reducing the Intensity of Light Nikon Coolpix 950, 990 and 995 have smallest aperture (resp., fastest shutter speed) f11.4, f11 and f10.3 (resp., 1/750, 1/1000 and 1/2000). Occasionally, it is possible that a correct exposure cannot be achieved even with the smallest aperture and fastest shutter speed. In such cases, ND filters become useful, because they can reduce the intensity of the light so that a photo can be taken within the limit of your camera. This is actually a common situation when film cameras and high speed films are used. Using Slower Shutter Speed Reducing the intensity of light means we can either use a slower shutter speed or a larger aperture. A slower shutter speed can cause moving objects blurred (i.e., motion blur) which creates a sense of motion. The following images were taken using the Aperture-Priority Mode (950, 990 and 995). The aperture was set to F2.8, the largest possible aperture, so that shutter speed can be reduced properly. The left image below was taken without a ND filter, and, as you can see, the truck (running about 40 miles) is frozen. Adding a ND4 filter to reduce 2 stops (i.e., slowing the shutter speed to a quarter of that used for the left image), the vehicle shows motion blur (middle image below). Motion blur becomes even more significant if ND8 is used instead of ND4 (right image below) which reduces the shutter speed to 1/8 of that used for the left image. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image Note that a number of ND filters can be stacked up to further reduce the intensity of light. The following image was taken by using both the ND4 and ND8 filters. This reduces the intensity of light to 1/32 (i.e., 5=2+3 stops) of the original. Now motion blur is so obvious even in a small image. With both ND4 and ND8 filters Click on the icon to see a larger image Using Larger Aperture Since ND filters reduce the amount of light that can pass through the lens tube, they can be used to open up the aperture while keep the shutter speed the same. Keep in mind that a larger aperture produces a shallower Depth of Field (950, 990 and 995). The following images were all taken with a shutter speed of 1/30 second. The left one did not use a ND filter and the aperture used was F10.7. As you can see, the background is only blurred a little, and the subject seems part of the background. Adding a ND4 filter reduces the aperture to F5.4. The background is further blurred and the subject is isolated from the background. Using the ND8 filter reduces the aperture to F3.9. Now the subject is well isolated from the background! Moreover, it shows a sense of distance. While we can stack both ND4 and ND8 filters together, since the aperture of your camera is not large enough, doing so will produce underexposure images. Without ND With ND4 filter With ND8 filter Click on the icon to see a larger image
GHS08Signal wordDangerHazard statementsH350 May cause cancer.H373 May cause damage to the lung, the spleen, the blood and the endocrine system through prolonged or repeated exposure. Route of exposure: Inhalative.Precautionary statementsP260 Do not breathe dust/fume/gas/mist/vapors/spray.P281 Use personal protective equipment as required.P308+P313 IF exposed or concerned: Get medical advice/attention.P314 Get medical advice/attention if you feel unwell.P405 Store locked up.P501 Dispose of contents/container in accordance with local/regional/national/international regulations.WHMIS classificationD2A - Very toxic material causing other toxic effectsClassification systemHMIS ratings (scale 0-4)(Hazardous Materials Identification System)Health (acute effects) = 1Flammability = 0Physical Hazard = 0Other hazardsResults of PBT and vPvB assessmentPBT:N/AvPvB:N/A
Safety, health and environmental regulations/legislation specific for the substance or mixtureNational regulationsAll components of this product are listed in the U.S. Environmental Protection Agency Toxic Substances Control Act Chemical substance Inventory.All components of this product are listed on the Canadian Domestic Substances List (DSL).SARA Section 313 (specific toxic chemical listings)Substance is not listed.California Proposition 65Prop 65 - Chemicals known to cause cancer14808-60-7 Silicon(IV) oxideProp 65 - Developmental toxicitySubstance is not listed.Prop 65 - Developmental toxicity, femaleSubstance is not listed.Prop 65 - Developmental toxicity, maleSubstance is not listed.Information about limitation of use:For use only by technically qualified individuals.Other regulations, limitations and prohibitive regulationsSubstance of Very High Concern (SVHC) according to the REACH Regulations (EC) No. 1907/2006.Substance is not listed.The conditions of restrictions according to Article 67 and Annex XVII of the Regulation (EC) No 1907/2006 (REACH) for the manufacturing, placing on themarket and use must be observed.Substance is not listed.Annex XIV of the REACH Regulations (requiring Authorisation for use)Substance is not listed.REACH - Pre-registered substancesSubstance is listed.Chemical safety assessment:A Chemical Safety Assessment has not been carried out.