A laser is created when electrons in the atoms in optical materials like glass, crystal, or gas absorb the energy from an electrical current or a light. That extra energy “excites” the electrons enough to move from a lower-energy orbit to a higher-energy orbit around the atom’s nucleus.

The particular wavelength of light is determined by the amount of energy released when the excited electron drops to a lower orbit. The levels of energy introduced can be tailored to the material in the gain medium to produce the desired beam color.

Unsure of what microscope objective is right for you? Use our guide on selecting the right microscope objective to weigh your options.

A laser takes advantage of the quantum properties of atoms that absorb and radiate particles of light called photons. When electrons in atoms return to their normal orbit—or “ground” state—either spontaneously or when “stimulated” with a light or other energy source, even another laser in some cases, they emit more photons.

Condensermicroscope function

For phase contrast observation of cell cultures, these universal semi-apochromat objectives provide long working distances and flat images with high transmission up to the near-infrared region. They help you achieve clear images of culture specimens regardless of the thickness and material of the vessel.

For relief contrast observation of living cells, including oocytes, in plastic vessels, our universal semi-apochromat objectives feature a long working distance. These also provide high image flatness and high transmission up to the near-infrared region.

These semi-apochromat long-working distance water-dipping objectives for electrophysiology deliver flat images for DIC and fluorescence imaging from the visible range to the near-infrared. Their high NA and low magnification enables bright, precise macro/micro fluorescence imaging for samples such as brain tissue.

These semi-apochromat objectives enable phase contrast observation while providing a high level of resolution, contrast, and flatness for unstained specimens.

Typesof objective lenses

For high-performance macro-observation, these apochromat objectives provide sharp, clear, flat images without color shift, achieving high transmission up to the near-infrared region of the spectrum. They perform well for fluorescence, brightfield, and Nomarksi DIC observations.

Designed for clinical research and routine examination work in the laboratory, these achromat objectives provide the level of field flatness required for fluorescence, darkfield, and brightfield observation in transmitted light.

Image

These super apochromat objectives provide spherical and chromatic aberration compensation and high transmission from the visible to the near infrared. Using silicone oil or water immersion media, which have refractive indexes closely matching that of live cells, they achieve high-resolution imaging deep in living tissue.

For clinical research requiring polarized light microscopy and pathology training, these achromat objectives enable transmitted polarized light observation at an affordable cost.

Designed for phase contrast observation of cell cultures in transmitted light, these achromat objectives combine field flatness and easy focusing with cost efficiency. They are well suited for routine microscopy demands.

Image

Light moves in waves. Ordinary visible light, say from a household light bulb or a flashlight, comprises multiple wavelengths, or colors, and are incoherent, meaning the crests and troughs of the light waves are moving at different wavelengths and in different directions.

These extended apochromat objectives offers a high numerical aperture (NA), wide homogenous image flatness, and 400 nm to 1000 nm chromatic aberration compensation. They enable high-resolution, bright image capture for a range of applications, including brightfield, fluorescence, and confocal super resolution microscopy.

Objectivelensfunction

Some lasers, such as ruby lasers, emit short pulses of light. Others, like helium–neon gas lasers or liquid dye lasers, emit light that is continuous. NIF, like the ruby laser, emits pulses of light lasting only billionths of a second. Laser light does not need to be visible. NIF beams start out as invisible infrared light and then pass through special optics that convert them to visible green light and then to invisible, high-energy ultraviolet light for optimum interaction with the target.

Lasers can be tiny constituents of microchips or as immense as NIF, the world’s most energetic laser housed in a building 10 stories high and as wide as three football fields.

Objective lenses are responsible for primary image formation, determining the quality of the image produced and controlling the total magnification and resolution. They can vary greatly in design and quality.

These extended apochromat objectives offer high NA, wide homogenous image flatness, 400 nm to 1000 nm chromatic aberration compensation, and the ability to observe phase contrast. Use them to observe transparent and colorless specimens such as live cells, biological tissues, and microorganisms.

Optimized for multiphoton excitation imaging, these objectives achieve high-resolution 3D imaging through fluorescence detection at a focal point of a large field of view. They enable high-precision imaging of biological specimens to a depth of up to 8 mm for in vivo and transparent samples.

Stage clipsmicroscope function

For use without a coverslip or cover glass, these objectives prevent image deterioration even under high magnification, making them well suited for blood smear specimens. They also feature extended flatness and high chromatic aberration correction.

To clean a microscope objective lens, first remove the objective lens and place it on a flat surface with the front lens facing up. Use a blower to remove any particles without touching the lens. Then fold a piece of lens paper into a narrow triangular shape. Moisten the pointed end of the paper with small amount of lens cleaner and place it on the lens. Wipe the lens in a spiral cleaning motion starting from the lens’ center to the edge. Check your work for any remaining residue with an eyepiece or loupe. If needed, repeat this wiping process with a new lens paper until the lens is clean. Important: never wipe a dry lens, and avoid using abrasive or lint cloths and facial or lab tissues. Doing so can scratch the lens surface. Find more tips on objective lens cleaning in our blog post, 6 Tips to Properly Clean Immersion Oil off Your Objectives.

Ocular lensmicroscope function

Two become four, four become eight and so on until the photons are amplified enough for them to all move past the mirrors and the optical material in perfect unison. Think of them as synchronized members of a marching band in the Rose Parade. And that unison gives the laser its power. Laser beams can stay sharply focused over vast distances, even to the moon and back.

Low powerobjective microscope function

Many microscopes have several objective lenses that you can rotate the nosepiece to view the specimen at varying magnification powers. Usually, you will find multiple objective lenses on a microscope, consisting of 1.25X to 150X.

Enabling tissue culture observation through bottles and dishes, these universal semi-apochromat objectives feature a long working distance and high contrast and resolution. Providing flat images and high transmission up to the NIR region, they are well suited for brightfield, DIC, and fluorescence observation.

Offering our highest numerical aperture values, these apochromat objectives are optimized for high-contrast TIRF and super resolution imaging. Achieve wide flatness with the UPLAPO-HR objectives’ high NA, enabling  real-time super resolution imaging of live cells and micro-organelles.

These apochromat objectives are dedicated to Fura-2 imaging that features high transmission of 340 nm wavelength light, which works well for calcium imaging with Fura-2 fluorescent dye. They perform well for fluorescence imaging through UV excitation.

This super-corrected apochromat objective corrects a broad range of color aberrations to provide images that capture fluorescence in the proper location. Delivering a high degree of correction for lateral and axial chromatic aberration in 2D and 3D images, it offers reliability and accuracy for colocalization analysis.

Designed for low-magnification, macro fluorescence observation, this semi-apochromat objective offers a long working distance, a high NA, and high transmission of 340 nm wavelength light.

High powerobjective microscope function

Designed for clinical research and routine examination in labs using phase contrast illumination, these achromat objectives offer excellent field flatness.

Optimized for polarized light microscopy, these semi-apochromat objectives provide flat images with high transmission up to the near-infrared region of the spectrum. They are designed to minimize internal strain to meet the requirements of polarization, Nomarski DIC, brightfield, and fluorescence applications.

In a laser beam, the light waves are “coherent,” meaning the beam of photons is moving in the same direction at the same wavelength. This is accomplished by sending the energized electrons through an optical “gain medium” such as a solid material like glass, or a gas.

Lasers have been around since 1960, although the idea goes back to 1900 (see “A Legacy of Lasers and Laser Fusion Pioneers”).

Microscope objectives come in a range of designs, including apochromat, semi-apochromat, and achromat, among others. Our expansive collection of microscope objectives suits a wide variety of life science applications and observation methods. Explore our selection below to find a microscope objective that meets your needs. You can also use our Objective Finder tool to compare options and locate the ideal microscope objective for your application.

This semi-apochromat objective series provides flat images and high transmission up to the near-infrared region of the spectrum. Acquiring sharp, clear images without color shift, they offer the desired quality and performance for fluorescence, brightfield, and Nomarksi DIC observations.

For relief contrast observation of living cells, including oocytes, in plastic vessels using transmitted light, these achromat objectives provide excellent field flatness.

A mirror on one side of the laser’s optical material bounces the photon back toward the electrons. The space between mirrors, or the “cavity,” is designed so the photon desired for the particular type of optical gain medium are fed back into the medium to stimulate the emission of an almost exact clone of that photon. They both move in the same direction and speed, to bounce off another mirror on the other side to repeat the cloning process.

Stagemicroscope function

The ocular lens is located at the top of the eyepiece tube where you position your eye during observation, while the objective lens is located closer to the sample. The ocular lens generally has a low magnification but works in combination with the objective lens to achieve greater magnification power. It magnifies the magnified image already captured by the objective lens. While the ocular lens focuses purely on magnification, the objective lens performs other functions, such as controlling the overall quality and clarity of the microscope image.

Today, lasers come in many sizes, shapes, colors, and levels of power, and are used for everything from surgery in hospitals, to bar code scanners at the grocery store, and even playing music, movies, and video games at home. You might have undergone LASIK surgery, which corrects your vision by using a tiny laser to reshape the cornea of your eye.

These semi-apochromat and achromat objectives are designed for integrated phase contrast observation of cell cultures. They are used in combination with a pre-centered phase contrast slider (CKX3-SLP), eliminating centering adjustments when changing the objective magnification.