Circularpolarization

Ellipticalpolarization

Image

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution. Contact your librarian or system administrator or Login to access Optica Member Subscription

s-polarization vs ppolarization

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution. Contact your librarian or system administrator or Login to access Optica Member Subscription

Polarizationof electromagnetic waves pdf

The authors are with the Department of Physics, Institute for Ultrafast Spectroscopy and Lasers, New York State Center for Advanced Technology for Ultrafast Photonic Materials and Applications, The City College and Graduate School of the City University of New York, New York, New York 10031.

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution. Contact your librarian or system administrator or Login to access Optica Member Subscription

The temporal profiles of the parallel and perpendicular polarization components of a light pulse backscattered from a scattering medium are different. The depth of penetration into the tissue and depolarization of the backscattered light depend on the scattering and absorption characteristics of the tissue. Based on these facts, a novel technique is demonstrated for noninvasive surface and beneath-the-surface imaging of biological systems.

This website uses cookies to deliver some of our products and services as well as for analytics and to provide you a more personalized experience. Click here to learn more. By continuing to use this site, you agree to our use of cookies. We've also updated our Privacy Notice. Click here to see what's new.

Polarization opticsreview

This website uses cookies to deliver some of our products and services as well as for analytics and to provide you a more personalized experience. Click here to learn more. By continuing to use this site, you agree to our use of cookies. We've also updated our Privacy Notice. Click here to see what's new.

The temporal profiles of the parallel and perpendicular polarization components of a light pulse backscattered from a scattering medium are different. The depth of penetration into the tissue and depolarization of the backscattered light depend on the scattering and absorption characteristics of the tissue. Based on these facts, a novel technique is demonstrated for noninvasive surface and beneath-the-surface imaging of biological systems.