Digital imaging lenses are often made of multiple lens elements to achieve the required specifications.  How are those lens elements made in mass production?  The answer to this question depends on the type of element chosen by the lens design engineer.  Three types of lens elements are commonly used today.  They are polished glass elements, molded plastic elements, and molded glass elements.  Each type of element has its own unique process steps and capabilities.  A good understanding of the manufacturing process for each type can help to ensure that the lens design can be successfully realized in practice.

Kinsey, N., Ferrera, M., Shalaev, V. M. & Boltasseva, A. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials. J. Opt. Soc. Am. B 32, 121–142 (2015).

Dong, P. et al. Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters. IEEE J. Sel. Top. Quantum Electron. 20, 150–157 (2014).

Mach zehndermanual

Chang, F., Onohara, K. & Mizuochi, T. Forward error correction for 100 G transport networks. IEEE Commun. Mag. 48, S48–S55 (2010).

Mach zehnderprice

This work was carried out in the Binnig and Rohrer Nanotechnology Center as well as in the FIRST lab cleanroom facility of ETH Zurich. EU project NAVOLCHI (288869) and the National Science Foundation (grant DMR-1303080) are acknowledged for partial funding of this project.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dionne, J. A., Diest, K., Sweatlock, L. A. & Atwater, H. A. PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009).

Zhu, S., Lo, G. Q. & Kwong, D. L. Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators. Opt. Express 18, 27802–27819 (2010).

Mach-Zehnder modulator

Cai, W., White, J. S. & Brongersma, M. L. Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett. 9, 4403–4411 (2009).

Beppu, S., Kasai, K., Yoshida, M. & Nakazawa, M. 2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz. Opt. Express 23, 4960–4969 (2015).

Han, Z. et al. On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides. Nano Lett. 15, 476–480 (2015).

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, C. Hafner & J. Leuthold

Tang, Y., Peters, J. D. & Bowers, J. E. Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 µm transmission. Opt. Express 20, 11529–11535 (2012).

Optical modulators encode electrical signals to the optical domain and thus constitute a key element in high-capacity communication links1,2. Ideally, they should feature operation at the highest speed with the least power consumption on the smallest footprint, and at low cost3. Unfortunately, current technologies fall short of these criteria4. Recently, plasmonics has emerged as a solution offering compact and fast devices5,6,7. Yet, practical implementations have turned out to be rather elusive. Here, we introduce a 70 GHz all-plasmonic Mach–Zehnder modulator that fits into a silicon waveguide of 10 μm length. This dramatic reduction in size by more than two orders of magnitude compared with photonic Mach–Zehnder modulators results in a low energy consumption of 25 fJ per bit up to the highest speeds. The technology suggests a cheap co-integration with electronics.

Dong, P., Xie, C., Chen, L., Fontaine, N. K. & Chen, Y.-K. Experimental demonstration of microring quadrature phase-shift keying modulators. Opt. Lett. 37, 1178–1180 (2012).

mach-zehnder pronunciation

Mach-Zehnder interferometer

Elder, D. L., Benight, S. J., Song, J., Robinson, B. H. & Dalton, L. R. Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores. Chem. Mater. 26, 872–874 (2014).

Haffner, C., Heni, W., Fedoryshyn, Y. et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photon 9, 525–528 (2015). https://doi.org/10.1038/nphoton.2015.127

Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518–526 (2010).

Mach-Zehnder interferometer optical fiber

mach-zehnder interferometer pdf

Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

Mach-Zehnder interferometer experiment

Green, W. M., Rooks, M. J., Sekaric, L. & Vlasov, Y. A. Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt. Express 15, 17106–17113 (2007).

For a lens design to be successfully produced in mass production it is important to choose the best design strategy based on manufacturing process considerations.  Should the design be all polished glass elements?  Should it contain molded plastic or glass elements?  If yes, how many and where?  Are the material choices and shape manufacturable by their respective processes?  Can the required tolerances be achieved?  How to optimize the overall cost and yield?  These questions require in-depth process knowledge not captured by today’s lens design software such as Optics Studio or Code V.  Talk to our engineers about your application requirement.  Let us help you to make your design more manufacturable.

Leuthold, J. et al. Silicon–organic hybrid electro-optical devices. IEEE J. Sel. Top. Quantum Electron 19, 114–126 (2013).

Pile, D. F. P. et al. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87, 261114 (2005).

C.H. conceived the concept, designed and fabricated the modulator, designed and performed the experiments, analysed the data and wrote the paper. W.H. installed and optimized the poling process, fabricated the devices, designed and performed the experiments and evaluated the data. Y.F. conceived the concept, designed the fabrication process, fabricated the modulator and wrote the manuscript. J.N. conceived the concept, designed the modulator and wrote the manuscript. A.M. conceived the concept. D.L.E. and L.R.D. developed and synthesized the DLD-164 nonlinear chromophore. B.B., A.J. and D.H. performed the data transmission experiment. Y.S. performed the bandwidth characterization, retrieved the electrical properties and wrote the manuscript. U.K. and C.H. performed and evaluated the ellipsometry experiment. A.E., F.D. and L.J. provided support for the design of the modulator. M.K. developed the concept. C.H. and J.L. conceived the concept, designed the experiment and wrote the manuscript.

Liu, J. et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nature Photon. 2, 433–437 (2008).

Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).