Free Space Optics Wireless Networks can only operate as Point-to-Point links between 2 units, however, when combined with LAN or WLAN networks they can provide very effective solutions to many scenarios such as:

Many microscopes have several objective lenses that you can rotate to view the specimen at varying magnification powers. Usually, you will find multiple objective lenes on a microscope, consisting of 1.25X to 150X.

Objectivelens magnification

Due to being located above ground unlike, for the most part, laid fibre optic cable, different challenges are presented when considering Free Space Optics performance with the biggest being atmospheric conditions. However, most drawbacks and shortcomings can be resolved through the inclusion of redundancy systems and correct wireless network planning.

Olympus microscope objective lenses for industrial inspections offer outstanding optical performance from the visible light to near-infrared region. At Evident, we offer an extensive selection of Olympus objectives suited to specific inspection requirements and tasks. Our MXPLFLN-BD objective is designed for darkfield observation and examining scratches on polished surfaces, while our SLMPLN objective is ideal for electronic assembly inspection. Find your ideal microscope objective today for your inspection task. No matter your requirements, Olympus objective lenses have you covered.

Fluctuations in signal strength can be caused by variations in temperature of air pockets between the transmitter and receiver due to natural differences or objects such as buildings etc. This effect, know as refractive turbulence, causes image dancing or blurring of the signal at the receiver end which results in amplitude loss.

MXPLFLN objectives add depth to the MPLFLN series for epi-illumination imaging by offering a simultaneously improved numerical aperture and working distance.

Objectivelens and eyepiece lens magnification

Scattering occurs when certain wavelengths experience collisions with objects and are redistributed in varying directions without energy loss (unlike absorption). Scattering is more likely to have a more frequent and larger effect over long distances where it can have a significant effect on beam strength.

Beam spread, or more technically called beam divergence, is measurable angular effect of the beam's dissipation at a constant rate as it travels further through the atmosphere.

Leicaobjective

MXPLFLN-BD objective lenses add depth to the MPLFLN series for epi-illumination imaging by offering simultaneously improved numerical aperture and working distance.

Free Space Optics wireless network ranges are typically found to be between around 100m and 2km but due to the nature of the signal strength being directly affected more by atmospheric conditions over increasing distance, the shorter the range between the two unit locations the higher the performance and availability of the connection will be.

Opticalmicroscope

Objectivelens

Building sway due to wind can be a problem as it disrupts the alignment between the two transceiver units causing loss of signal. Divergent beam technology can be used to allow the units to communicate in these situations but performance is still slightly affected.

The basis of Free Space Optics communication is rather straightforward with each unit housing an optical receiver and transmitter, allowing the sending and receiving of data simultaneously, and an optical source with a focusing lens. The unit at one location transmits a beam of focused light carrying the information directly at the unit at the receiving location where the light beam is then transferred to an optical fibre from a high sensitivity receiver.

Water vapour molecules in the air absorb the energy from photons (light particles) within the light beam which causes an overall loss in power density. The use of spatial diversity and correct system power helps combat this effect as absorption is more common at certain wavelength ranges of light.

Objectivelensmicroscopefunction

Terms Of Use | Privacy Notice | Cookies | Cookie Settings | About Us | Careers | Careers | Sitemap

Objective lenses are responsible for primary image formation, determining the quality of the image produced and controlling the total magnification and resolution. They can vary greatly in design and quality.

All Free Space Optics technology is strictly controlled to make sure that standards are followed to limit any dangers. On the whole, Free Space Optics units are of low enough power not to cause long term harm when the laser is exposed to a person's eye, however precautions should be taken so that this never occurs if possible.

The ocular lens is located at the top of the eyepiece tube where you position your eye during observation, while the objective lens is located closer to the sample. The ocular lens generally has a low magnification but works in combination with the objective lens to achieve greater magnification power. It magnifies the magnified image already captured by the objective lens. While the ocular lens focuses purely on magnification, the objective lens performs other functions, such as controlling the overall quality and clarity of the microscope image.

What is the purpose of theobjectivelens in a lightmicroscope

Free Space Optics provides speeds comparable to those of optical fibre connections with the flexibility and practicality of being part of a wireless network providing bandwidth speeds typically advertised as up to 10Mbps, 100Mbps, 155Mbps and 1.25Gbps, with possible speeds of up to 10Gbps becoming likely in the future with the use of WDM (Wavelength-Division Multiplexing) technology. Currently, the only other wireless technology capable of these kinds of speeds is Millimetre Wave RF Wireless Networking which, in comparison, requires licensing and can affected severely by rain in the 60GHz range. Due to the received beam being transferred onto an optical fibre to connect to the core network, trouble free integration and easy set up make Free Space Optics networking's compatibility with any system very high.

Terms Of Use | Privacy Notice | Cookies | Cookie Settings | About Us | Imprint | Careers | Careers | Sitemap

Free Space Optics (FSO) is a technology that uses laser beams via a line of sight optical bandwidth connection to transfer data, video or voice communications across areas ranging typically from 100m to a few kilometres at throughput bandwidths up to 1.25Gbps at frequencies above 300GHz of wavelengths, typically, 785 to 1550nm. Using Free Space Optics wireless networks eliminates the need to secure licensing found with RF signal solutions and also the expensive costs of laying fibre optic cable; principally the concept of transferring data via light is the same as with fibre optics just through a different medium.

To clean a microscope objective lens, first remove the objective lens and place it on a flat surface with the front lens facing up. Use a blower to remove any particles without touching the lens. Then fold a piece of lens paper into a narrow triangular shape. Moisten the pointed end of the paper with small amount of lens cleaner and place it on the lens. Wipe the lens in a spiral cleaning motion starting from the lens’ center to the edge. Check your work for any remaining residue with an eyepiece or loupe. If needed, repeat this wiping process with a new lens paper until the lens is clean. Important: never wipe a dry lens, and avoid using abrasive or lint cloths and facial or lab tissues. Doing so can scratch the lens surface. Find more tips on objective lens cleaning in our blog post, 6 Tips to Properly Clean Immersion Oil off Your Objectives.

Beam wander or jitter is the amount that the centroid or peak value of the beam strength profile moves with time and can be caused by turbulence resulting in the beam becoming unfocused.

MicrometerThis product may not be available in your area.View ProductMPLAPON Our MPLAPON plan apochromat objective lens series provides our highest level of chromatic correction and resolution capability, along with a high level of wavefront aberration correction. View ProductMPLAPON-Oil Our MPLAPON-Oil objective is a plan apochromat and oil immersion lens that provides our highest level of chromatic correction and resolution capability. The numerical aperture of 1.45 offers outstanding image resolution. View ProductMXPLFLN MXPLFLN objectives add depth to the MPLFLN series for epi-illumination imaging by offering a simultaneously improved numerical aperture and working distance. View ProductMXPLFLN-BD MXPLFLN-BD objective lenses add depth to the MPLFLN series for epi-illumination imaging by offering simultaneously improved numerical aperture and working distance. View ProductMPLN Our MPLN plan achromat lens series is dedicated to brightfield observation and provides excellent contrast and optimal flatness throughout the field of view. View ProductMPLN-BD Our MPLN plan achromat lens series is designed for both brightfield and darkfield observation and provides excellent contrast and optimal flatness throughout the field of view. View ProductMPLFLN The MPLFLN objective lens has well-balanced performance with a semi-apochromat color correction, a fair working distance, and a high numerical aperture. It is suitable for a wide range of applications. View ProductMPLFLN-BD The MPLFLN-BD objective lens has semi-apochromat color correction and suits a wide range of industrial inspection applications. It is specially designed for darkfield observation and examining scratches or etchings on polished surfaces. View ProductLMPLFLN Our LMPLFLN lens is part of our plan semi-apochromat series, providing longer working distances for added sample safety and observation with increased contrast. View ProductLMPLFLN-BD Our LMPLFLN-BD brightfield/darkfield objective lens is part of our plan semi-apochromat series, providing longer working distances for added sample safety and observation with increased contrast. View ProductSLMPLN The SLMPLN plan achromat objective lens offers an exceptionally long working distance and the image clarity that you expect from the Olympus UIS2 optical system. It is ideal for electronic assembly inspection and other similar applications. View ProductLCPLFLN-LCD The LCPLFLN-LCD objective lenses are optimal for observing samples through glass substrates, such as LCD panels. The adoption of optical correction rings enables aberration correction according to glass thickness. View ProductLMPLN-IR/LCPLN-IR Our LMPLN-IR and LCPLN-IR plan achromat lenses have a long working distance and are specifically designed for optimal transmission in the near-infrared region (700–1300 nm wavelengths). View ProductWhite Light Interferometry Objective Lens This objective lens is designed for the Mirau style of white light interferometers and maintains a high level of temperature tolerance. The optimized numerical aperture of 0.8 provides improved light gathering, with a working distance of 0.7 mm. View Product

Objectivelensmicroscope

Free Space Optics is a very secure method of wireless communications when compared to RF Signal Networks because the light beams cannot be detected by spectrum analysers, data transmissions can be encrypted, the laser beams are very narrow and invisible making them hard to find or detect and to receive the signal, another matching receiver would have to be aligned within the light path which is quite unlikely to happen.

Unlike rain and snow, that on the whole has little effect on Free Space Optics communication, fog and water vapour droplets are a real hindrance to the operating performance. The small water droplets can at points completely stop the light beams from being received due to light absorption, refraction scattering or even complete reflection which can significantly lower data rates. Therefore in foggy areas, Free Space Optics may not be the best solution, however applications have been successfully carried out that have provided acceptable reliability with redundancy systems in place. The following five points listed all refer to the signal attenuation caused by atmospheric conditions.

Due to light not be able to travel through opaque mediums, objects such as birds, planes and people can momentarily cause interruptions to the service by blocking the Free Space Optics' light beam, with service resuming instantly when the light path is cleared. Multi-beam technology can be used with compatible systems to try and counter this problem.