The light intensity for our illumination products is typically specified in terms of footcandles (English unit). Lux, the SI unit equivalent, can be related to footcandles as follows: 1 lux = 0.0929 footcandle.

A polarizer is useful for eliminating specular reflections (glare) and bringing out surface defects in an image. A polarizer can be mounted either on the light source, on the video lens, or on both depending upon the object under inspection. When two polarizers are used, one on the illumination source and one on the video lens, their polarization axes must be oriented perpendicular to each other. The following are polarization solutions to glare problems for several material types and circumstances.

Please select your shipping country to view the most accurate inventory information, and to determine the correct Edmund Optics sales office for your order.

Mounting a polarizer on the light source as well as on the lens is recommended for enhancing contrast and bringing out surface details. The polarized light incident on the shiny surface will remain polarized when it's reflected. Surface defects in the metal will alter the polarization of the reflected light. Turning the polarizer on the lens so its polarization axis is perpendicular to that of the illumination source will reduce the glare and make scratches and digs in the surface visible.

If you don't find what your looking for, email or give us a call for help. Check out our show schedule to see when we'll be in your area, we'll update it as we confirm the shows. Thank you for visiting our site.

Image

Examples illustrate darkfield and backlight illumination with assorted color filters. Note: Images taken with 10X Close Focus Zoom Lens #54-363: Field of View = 30mm, Working Distance = 200mm.

The pitfalls of improper illumination are clear, but how are they avoided? To ensure optimal illumination when integrating a system, it is important to recognize the role that choosing the right components plays. Every component affects the amount of light incident on the sensor and, therefore, the system's image quality. The imaging lens' aperture (f/#) impacts the amount of light incident on the camera. Illumination should be increased as the lens aperture is closed (i.e. higher f/#). High power lenses usually require more illumination, as smaller areas viewed reflect less light back into the lens. The camera's minimum sensitivity is also important in determining the minimum amount of light required in the system. In addition, camera settings such as gain, shutter speed, etc., affect the sensor's sensitivity. Fiber optic illumination usually involves an illuminator and light guide, each of which should be integrated to optimize lighting at the object.

Since proper illumination is often the determining factor between a system's success and failure, many specific products and techniques have been developed to overcome the most common lighting obstacles. The target used throughout this section was developed to demonstrate the strengths and weaknesses of these various lighting schemes for a variety of object features. The grooves, colors, surface deformations, and specular areas on the target represent some of the common trouble areas that may demand special attention in actual applications.

Correct illumination is critical to an image system and improper illumination can cause a variety of image problems. Blooming or hot spots, for example, can hide important image information, as can shadowing. In addition, shadowing can also cause false edge calculations when measuring, resulting in inaccurate measurements. Poor illumination can also result in a low signal-to-noise ratio. Non-uniform lighting, in particular, can harm signal-to-noise ratios and make tasks such as thresholding more difficult. These are only a few of the reasons why correct illumination for your application is so important.

Using two polarizers with perpendicular orientation will eliminate hot spots in the image caused by the metallic parts. The rest of the field will be evenly illuminated due to the diffuse areas reflecting randomly polarized light to the lens.

Table top magnifying lamp with LED lights, professional grade.  Superior quality glass lens.  30 pcs SMD LED.  3X power magnification.  The lens measures 4.6" x 2.95" complete with a latching dust cover.  *Available in white or black*

A polarizer on the lens is usually sufficient for blocking glare. (Rotate the polarizer until glare is at a minimum.) Add a polarizer in front of the light source if glare is still present.

Often, a customer struggles with contrast and resolution problems in an imaging system, while underestimating the power of proper illumination. In fact, desired image quality can typically be met by improving a system's illumination rather than investing in higher resolution detectors, imaging lenses, and software. System integrators should remember that proper light intensity in the final image is directly dependent upon component selection.