Valo Crosshair Pro on the App Store - ccrosshair
Fortunately OptiSource can help guide you to the appropriate waveplate depending on the answers to all of those questions. We have an extensive list of catalog wavelengths with emphasis on the ND:YAG laser line. In the following text I’m assuming a fundamental understanding of waveplates and polarization in general. Let’s start by dissecting our part numbering scheme for simple (not multiple wavelength) waveplates.
Mirrorcle Technologies MEMS Mirror Development Kit allows a user to quickly and efficiently gain familiarity with all aspects of these devices and their various possible uses. Furthermore, it enables safe operation of the devices with specifically developed software and MEMS driver solutions which include several levels of protection for the micromirror devices.
ASQWPO: “Air-Spaced Quartz Wave Plate – Zero Order” meaning the zero-order components are coated on both sides and assembled in a mount that provides a small air gap between the 2 elements. ASQWPO systems are recommended for high power applications where a standard contacted QWPO may delaminate or otherwise exhibit performance issues due to the thermal cycles during use.
OptiSource, LLC is a manufacturer of laser quality optical components in prototype or OEM quantities. Small and responsive, the customer benefits from a lack of large company overhead costs. Conversely, OptiSource, LLC incorporates many of the technical, manufacturing, quality, and metrology advantages of a large company. OptiSource, LLC is located in Albuquerque, NM.
Waveplates - Retardation Code CodeRetardationSpoken 2λ/2Half wave 4λ/4Quarter wave 8λ/8Eighth wave 1λFull wave or whole wave
If your application is temperature sensitive the following plots would help you in deciding which product code would be appropriate.
If you have questions or suggestions relating to this webpage, please email to webmaster@mirrorcletech.com. © 2005-2018 Mirrorcle Technologies, Inc. All rights reserved.
Scanning, two axis (tip-tilt) mirrors are a fundamental optical beam steering technology required in a wide variety of applications across many industries. Mirrorcle's MEMS mirror technology provides a highly competitive solution to cater to many of those applications due to its capability to control mirrors to tip/tilt at arbitrary angles in two orthogonal axes, or two rotational degrees of freedom. For example, a laser beam pointed at the micromirror could be deflected to any angle from -12° to +12° (specifications vary for different designs) on either or both axes, and therefore anywhere in a 24° field of regard cone. When a wide-angle lens is employed (see add-ons below,) field of regard of over 45° for each axis is easy to achieve.
ACWP: “Achromatic Wave Plate” – OptiSource provides Achromatic Wave Plates as a retardation solution for applications requiring accurate polarization over a wider bandwidth. Our ACWP product line utilizes one element of crystal quartz and one element of Magnesium Fluoride to achieve the stated specifications for each spectral region. Achromatic Wave Plates are available as cemented or air-spaced components.
Retardation Code is value of 1/retardation value. A quarter wave plate is λ/4 and half waveplate is λ/2 and an eighth waveplate is λ/8.
UTWP: “Ultra-Thin – Wave Plate” – this waveplate is still made of crystalline quartz like the QWPO or QWPM products already described but as the name implies it describes the final fabrication thickness of the waveplate. This waveplate will have a thickness that is usually greater than the “zeroth order” thickness and less than a 100 micrometers in thickness.
In most applications the mirrors do not require a position sensor or closed-loop control due to their exceptional repeatability in open loop control. Nevertheless, they may be equipped or packaged by customers with external position sensors for closed loop control operation. In those applications, customers have used the MEMS mirrors in closed-loop for feedback-based damping. However, Further technical details are made available in the Development Kit Overview and in additional documents and scientific publications on the support web page.
Regarding the economics of the purchase of a waveplate we normalized the sales price of all the other product codes to a compound Zero Order waveplate. For example if a compound QWPO was $1.00 then the equivalent QWPM would be approximately $0.31 (or 31%). You will notice that we’ve put a value of 10 for a True QWPO for the UV & Visible product codes. For the UV the zeroth order thickness will be on the order of 5 microns and for visible 15 microns. While it is possible to manufacture to these thicknesses, and we have provided these types of thicknesses to customers, the yield loss would be not acceptable from a standard catalog option due to the extreme care required in post fabrication process handling and subsequent cleaning for coating.
QWPM: “Quartz Wave Plate – Multiple Order” meaning that it will be one of several “orders” plus the retardation that is being requested. Think 5.25, 3.5, 17.125 or 11.432. The integer part of this numeric description is the “order” and decimal portion is the “retardation”. We have a fifth order quarter wave, or third order half wave or 17th order eighth wave or 11th order .432th wave. The thickness of the finished product is greater than 250 micrometers and is typically 500 micrometers.
Waveplates - Mount Code CodeActual Diameter (in)Actual Diameter (mm) 060.5815 080.7920 101.0025.4 121.1830 151.538.1 202.050.8
Development Kit users are able to display a variety of vector graphics as well as multiframe animations at arbitrary refresh rates. Scanners can be operated in point-to-point vector scanning or resonant and rastering modes. The system is highly adaptable to projection on various surfaces and in a variety of applications, including projection on specially-coated transparent surfaces. The ultra-low power consumption of the MEMS devices makes the system highly portable and miniature - the kit is very light-weight and fully mobile when used with a laptop computer.
QWPL: “Quartz Wave Plate – Low Order” meaning that the “order” will be low relative to a QWPM. The final thickness of this product will be between 100 and 250 micrometers.
QWPO: OptiSource defines this as a compound “Quartz Wave Plate – Zero Order” meaning that this is the zeroth order of retardation that is being requested. Please consider the following retardances 0.25, 0.5, 0.125 or 0.432 for the following example. We interpret it as zeroth order quarter wave, or zeroth order half wave or zeroth order eighth wave or zeroth order .432th wave. The final thickness of this product is approximately 1 mm.
Mirrorcle Technologies gimbal-less two-axis mirrors are driven by electrostatic actuators. Their angle of rotation closely follows a square law, i.e. angle is proportional to the square of applied voltage. This inherent non-linearity is linearized by specialized, bias-differential driving circuits. Mechanically, the mirrors behave approximately as second-order (mass-spring) systems with a high Q of 30-80, and therefore require properly conditioned drive signals to obtain well controlled performance. In open-loop driving, smoothing of applied voltage waveforms (input shaping and/or filtering) prevents overshoot and mechanical ringing at device resonance. Mirrorcle Technologies software and hardware drivers implement multiple methodologies to provide linearization and fast and stable point-to-point beam steering.
You will notice that we have left some blanks specifically in the compound QWPO product code of the Summary table. While we believe that the compound QWPO values would mimic those of the True QWPO we do not have the capability to verify the parameters. As for the other parameters we have had customers support our theoretical values with their specific applications. It should be noted that the values listed are conservative.
Diameter Code is value of the diameter with respect to 1 inch where the code 10 equal 1” diameter. A code value of 08 would be 0.787 inches (20 mm).
Waveplates - Diameter Code CodeActual Diameter (in)Actual Diameter (mm) 060.5815 080.7920 101.0025.4 121.1830 151.538.1 202.050.8
From the point of view of manufacturing the thickness of any of the lower orders for the NIR UTWP would not fall within the UTWP < 100 micron thickness range.
QWPD: “Quartz Wave Plate – Dual Order” meaning that the wave plate can be used in a dichroic application. These can be harmonics of a given laser line (ie 1064 / 532), or non-harmonic where a desired shift at each wavelength is preferred (ie 773 / 515). Customers may be asked to prioritize the retardation at one wavelength or another if the design does not allow for adequate retardation at both wavelengths.
Wavelength Code is typically the “abbreviated” version of the wavelength in nanometers. For example the third harmonic of ND:YAG is 354.7 nm and the HeNe wavelength 632.8 nm would be coded as 355 and 633 respectively.
The following bandwidth plots, although specific to the ND:YAG and its harmonics, gives you a sense of what you can expect theoretically from the various product codes. Items to consider are the bandwidth of your laser or the bandwidth of your broad spectrum source when your application needs a waveplate.