Theory, method, and test tools for determination of 3D MTF ... - mtf test
For details, read the Gold Open Access article by Liu, Zhang, et al., “High-speed free-space optical communication using standard fiber communication components without optical amplification,” Adv. Photon. Nexus 2(6) 065001 (2023), doi 10.1117/1.APN.2.6.065001.
The ocular lens provides additional magnification and is adjustable. Users can turn a knob or move the binocular lenses (on microscopes with two eyepieces), mimicking the adjustments the natural lens in our eyes makes to see objects at different distances. This way, users with different levels of eyesight can manipulate the eyepiece to focus the image provided by the objective lens.
Leica objective
The first time peering through a microscope is a memorable moment for many budding scientists. As kids grow, their early curiosity can ripen into a more serious interest in science. Teachers and parents can foster kids’ interest in STEAM fields by allowing them to explore the universe of microscopic life that surrounds us all.
The first step is involving kids in understanding scientific research methods. They should understand the instruments that help scientists make discoveries, engineers make micro-machines, technologists understand tiny chips, and artists interpret the world they see and hear through artistic expression.
Zeiss objective
Now, portable, lightweight microscopes have objective lenses that work together with cameras on mobile phones to provide magnification. Using phones with portable microscopes adds the ability to capture magnified images and send them to databases for analysis or store them in the cloud or locally on the phone for future examination.
The implications of this achievement are profound. This miniaturized FSO breakthrough unlocks the potential for high-speed wireless communication virtually anywhere, making connectivity happen even in the most challenging environments. As we look ahead, these devices are set to play a pivotal role in the future of FSO networks, offering plug-and-play configurations that can establish high-speed FSO channels in minutes. This innovation addresses the growing need for field-deployable, high-speed wireless communication solutions, bridging the connectivity gap in a world where staying connected is more critical than ever.
FSO has garnered attention for its versatility across various scales of operation. On a global level, it plays a crucial role in establishing high-speed satellite internet projects like Starlink, ensuring global connectivity. At the ground level, particularly in low-altitude scenarios, FSO shines as an attractive option for last-mile connections, disaster recovery efforts, and military communications.
Confocal microscopy
The core of this miniaturized FSO system comprises a pair of FSO devices. Each FSO device is compact, measuring just 45 cm × 40 cm × 35 cm, with a weight of 9.5 kilograms and a power consumption of approximately 10 watts. Each houses an optical transceiver module, an acquisition, pointing, and tracking (APT) device, and its control electronics, all safely sealed within a box for rugged outdoor operation. The APT device stands out with its low-diffraction optical design and a highly efficient 4-stage closed-loop feedback control system.
According to Zhenda Xie, professor at the NJU School of Electronic Science and Engineering and corresponding author for the APNexus article, “This work highlights the potential for achieving FSO using commercially available fiber optical transceiver modules.” Xie notes that the effective distance of 1 km may be extended; his team also tested the optical links at up to 4 km, where the average loss increased to 18 dB – likely due to a foggy test environment. “With better weather conditions and optical amplification, longer FSO can be expected,” Xie concludes.
Most microscopes used in schools and labs have at least two, and usually more, lenses. Objective lenses are the lenses that directly observe the object the microscope user is examining. In stationary microscopes, the objective lens then focuses reflected light from the object up a tube toward the ocular lens, which is the lens the user looks through.
Opticalmicroscope
When light shines, nearly everything it shines on will reflect at least some of it back. Kids can understand that our eyes gather that light. The light travels through the clear outer layer of the eye, called the cornea, to the crystalline lens. The cornea and lens work together to focus the light onto the back of the eye, where the retina converts the light to electric signals that travel along the optic nerve to the brain. The brain then interprets the signals as an image.
In a significant technological leap, researchers from Nanjing University (NJU) have developed a miniaturized FSO system that promises to revolutionize high-speed wireless communication. As reported in the Gold Open Access journal Advanced Photonics Nexus (APNexus), this remarkable system achieved an astonishing communication bandwidth of 9.16 gigabytes per second (Gbps) over a 1-kilometer (km) link. What sets it apart is that it accomplishes such high FSO performance using readily available commercial fiber optical communication transceiver modules (no need for optical amplification).
When a child uses a microscope for the first time, they may ask lots of questions, which is a great quality in a scientist! One of the inevitable questions is, “How does it do that?” Here are ways to explain the functions of microscope objective lenses.
Objective lensmicroscope
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.
In addition to simply capturing reflected light to render an image, the objective lens of a microscope magnifies the image. Many stationary microscopes have several objective lenses that the user can rotate to view the object at varying levels, or “powers,” of magnification.
What is the purpose of the objective lens in a lightmicroscope
In a world that relies on high-speed internet and seamless communication, the absence of a reliable fiber connection can be a significant hurdle. Fortunately, a cutting-edge technology known as free-space optical communication (FSO) offers a flexible solution for field-deployable high-speed wireless communication in areas where fiber connections are unavailable.
From space-wide internet to last-mile connectivity, portable free-space optical communication promises to bridge connectivity gaps on-demand
What does the objective lens do on amicroscope
The FSO system exhibits remarkable tracking capabilities, through the integration of multiple sensors and sophisticated algorithms, which enable automatic, fast, and highly accurate acquisition and fine tracking in just 10 minutes. This precision keeps the tracking error within an impressive 3 microradians (μrad), resulting in a low average link loss of just 13.7 decibels (dB) over the 1-km link. Such precision also eliminates the need for optical amplification. Remarkably, the FSO system can achieve bidirectional data rates averaging 9.27 Gbps over the 1-km link, using only commercial transceiver modules.
Similarly, the objective lens in a microscope captures and refracts the light reflected from an object, even a tiny object suspended in a drop of water. The refraction of light through the objective lens creates a focused and magnified image of the object you’re looking at.
A free-space optical communication experiment involves a pair of FSO devices with one (“Alice”) fixed on the top floor of a building, while the other (“Bob”) is loaded on a radio-controlled electric vehicle so that it can move around to vary the distance of the FSO link nodes. Image credit: Liu, Zhang, et al., doi 10.1117/1.APN.2.6.065001.
Lumenmicroscope
Daneet Steffens SPIE--International Society for Optics and Photonics daneets@spie.org Office: 360-685-5478
Foldscope offers microscope kits for students that help students understand how microscopes and microscope objective lenses function while making them easy to take outside for exploration. Order microscope kits for your students today!
image: A free-space optical communication experiment involves a pair of FSO devices with one (“Alice”) fixed on the top floor of a building, while the other (“Bob”) is loaded on a radio-controlled electric vehicle so that it can move around to vary the distance of the FSO link nodes. Image credit: Liu, Zhang, et al., doi 10.1117/1.APN.2.6.065001. view more
Muscles in the eye adjust the shape of the lens to focus correctly depending on what we’re looking at and how far away it is.