Now Diffuser Ultrasonic Hand Blown Glass - glass aromatherapy diffuser
A third way to polarize light is by scattering. Light scattering off atoms and molecules in the atmosphere is unpolarized if the light keeps traveling in the same direction, is linearly polarized if at scatters in a direction perpendicular to the way it was traveling, and somewhere between linearly polarized and unpolarized if it scatters of at another angle. There are plenty of materials that affect the polarization of light. Certain materials (such as calcite) exhibit a property known as birefringence. A crystal of birefringent material affects light polarized in a particular direction differently from light polarized at 90 degrees to that direction; it refracts light polarized one way at a different angle than it refracts light polarized the other way. Looking through a birefringent crystal at something, you'd see a double image. Liquid crystal displays, such as those in digital watches and calculators, also exploit the properties of polarized light. Polarization by reflection One way to polarize light is by reflection. If a beam of light strikes an interface so that there is a 90° angle between the reflected and refracted beams, the reflected beam will be linearly polarized. The direction of polarization (the way the electric field vectors point)is parallel to the plane of the interface. The special angle of incidence that satisfies this condition, where the reflected and refracted beams are perpendicular to each other, is known as the Brewster angle. The Brewster angle, the angle of incidence required to produce a linearly-polarized reflected beam, is given by: This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Despite these disadvantages, the benefits of aspheric lenses often outweigh the drawbacks in many optical systems. The improved optical performance, correction of aberrations, compact design, and versatility make aspheric lenses a valuable tool in various industries.
Liquid crystal displays, such as those in digital watches and calculators, also exploit the properties of polarized light. Polarization by reflection One way to polarize light is by reflection. If a beam of light strikes an interface so that there is a 90° angle between the reflected and refracted beams, the reflected beam will be linearly polarized. The direction of polarization (the way the electric field vectors point)is parallel to the plane of the interface. The special angle of incidence that satisfies this condition, where the reflected and refracted beams are perpendicular to each other, is known as the Brewster angle. The Brewster angle, the angle of incidence required to produce a linearly-polarized reflected beam, is given by: This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Aspherical lens photography
Aspheric lenses, designed to control the distance from the optical axis, maintain a constant focal length while minimizing aberrations, making them perfect for a myriad of applications, including photography, astronomy, eyewear, and more. By using aspheric lenses, optical systems can achieve higher resolution, improved light throughput, and enhanced image quality.
Choosing the right material for making an aspheric lens is the first step involved in this process. Materials may range from glass for precise optical instruments to polymers used in consumer eye-wear.
Aspheric lenses play a vital role in modern optics, offering improved optical performance, reduced aberrations, and enhanced imaging capabilities. Their unique surface profile allows for the correction of spherical aberrations and the production of compact and lightweight optical systems. With advancements in manufacturing techniques, aspheric lenses are becoming more accessible and cost-effective. Whether in photography, microscopy, medical devices, or defense optics, aspheric lenses continue to push the boundaries of optical technology, enabling clearer, sharper, and more accurate imaging.
Surface Accuracies: Consider the desired surface accuracies, including form errors, waviness, and surface roughness, to ensure optimal performance. The surface quality of aspheric lenses affects their ability to correct aberrations and deliver high-quality images.
Unlike traditional spherical lenses, which have the same curvature across their surface, aspheric lenses have a varying curvature that follows a specific mathematical equation. This equation determines the shape of the lens surface and allows for precise correction of aberrations.
Surface Imperfections: Achieving high surface quality in aspheric lenses can be more difficult compared to spherical lenses. The non-spherical surface profile of aspheric lenses makes them more susceptible to surface irregularities, such as scratches and imperfections. Careful handling and quality control are necessary to ensure optimal surface quality.
Wide Range of Applications: Aspheric lenses find applications in various fields, including photography, astronomy, microscopy, medical devices, and more. Their ability to correct aberrations, improve image quality, and provide design flexibility makes them suitable for a wide range of optical systems.
Aspheric lensesadvantages disadvantages
Correction of Spherical Aberration: One of the key advantages of aspheric lenses is their ability to correct spherical aberration. Spherical aberration occurs when light rays passing through a spherical lens do not converge to a single point, resulting in blurred and distorted images. Aspheric lenses, with their non-spherical surface profile, can mitigate spherical aberration and produce sharper and clearer images across the entire field of view.
Diamond turning comes into play with highly accurate aspherical lenses. It uses a diamond-tipped tool to carve away nanometer by nanometer until it reaches the aspherical shape of the lens.
Precision Glass Molding is a technique that can produce many aspheric lenses at once. It consists of heating the glass blank until it becomes moldable then pressing it into a mold with the desired form. • Advantages: PGM is cost-effective for large-scale manufacturing and promotes uniformity among lenses. • Use Cases: Complex lens shapes on consumer electronics like camera lenses and smartphone optics.
A third way to polarize light is by scattering. Light scattering off atoms and molecules in the atmosphere is unpolarized if the light keeps traveling in the same direction, is linearly polarized if at scatters in a direction perpendicular to the way it was traveling, and somewhere between linearly polarized and unpolarized if it scatters of at another angle. There are plenty of materials that affect the polarization of light. Certain materials (such as calcite) exhibit a property known as birefringence. A crystal of birefringent material affects light polarized in a particular direction differently from light polarized at 90 degrees to that direction; it refracts light polarized one way at a different angle than it refracts light polarized the other way. Looking through a birefringent crystal at something, you'd see a double image. Liquid crystal displays, such as those in digital watches and calculators, also exploit the properties of polarized light. Polarization by reflection One way to polarize light is by reflection. If a beam of light strikes an interface so that there is a 90° angle between the reflected and refracted beams, the reflected beam will be linearly polarized. The direction of polarization (the way the electric field vectors point)is parallel to the plane of the interface. The special angle of incidence that satisfies this condition, where the reflected and refracted beams are perpendicular to each other, is known as the Brewster angle. The Brewster angle, the angle of incidence required to produce a linearly-polarized reflected beam, is given by: This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Aspheric lenses, with their unique and varied anatomical features, present a significant advancement in optical technology. Unlike their spherical counterparts that maintain a constant radius of curvature, aspheric lenses boast a radius that changes according to a specific mathematical equation. This equation, often a conic section or an aspheric polynomial, is pivotal in defining the lens’s surface shape, enabling it to correct aberrations more precisely than a spherical lens.
Versatility in Design: Aspheric lenses offer greater design flexibility compared to spherical lenses. Designers can optimize the surface profile of aspheric lenses to achieve specific optical properties and correct for various aberrations. This versatility allows for the customization of lenses to meet specific application requirements.
An aspheric lens is a type of lens that has a non-spherical surface profile, meaning it does not have a constant curvature across its entire surface. This unique design allows aspheric lenses to correct for spherical aberrations, resulting in improved image quality and reduced optical aberrations.
Optical Requirements: Determine the specific optical properties required for your application, such as focal length, numerical aperture, and wavelength range. Consider the impact of aspheric aberrations on your system’s performance.
After the process of machining, the lenses are then polished so that any imperfections within them can be eliminated and clearness of optical sort obtained as a result. This is highly relevant for aspheric ones because even minor surface defects can greatly affect their performance.
By employing accurate and reliable metrology techniques, manufacturers can validate the quality of aspheric lenses and guarantee their performance in optical systems.
Aspheric lenses go way beyond being an advancement in optics; they form a bedrock in many applications requiring high precision and efficiency. They have lighter weight allowing for thin structures that reduce aberrations hence providing clearer images. Here is how different field uses aspheric lenses:
Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Another method for producing polymer-based asphere is injection molding process. The molten polymer is injected into a precision mold, cooled down, and then released as a finished lens. • Advantages: Cost-effective in mass production and low cost per unit. • Use Cases: Could be used to make eyeglasses or contact lenses from various materials.
Reduced Flare and Ghosting: Aspheric lenses are known for their ability to reduce flare and ghosting, which are common optical artifacts caused by internal reflections within the lens elements. By minimizing these artifacts, aspheric lenses deliver images with improved contrast and clarity, particularly in challenging lighting conditions.
One way to polarize light is by reflection. If a beam of light strikes an interface so that there is a 90° angle between the reflected and refracted beams, the reflected beam will be linearly polarized. The direction of polarization (the way the electric field vectors point)is parallel to the plane of the interface. The special angle of incidence that satisfies this condition, where the reflected and refracted beams are perpendicular to each other, is known as the Brewster angle. The Brewster angle, the angle of incidence required to produce a linearly-polarized reflected beam, is given by: This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Precision polishing is employed to attain the exact mirror-like finish required for aspheric lenses. This technique smoothens carefully the surface removing any flaws hence reaching the desired optical clarity. • Advantages: Provides better surface finishing and works well with different lens sizes and materials. • Use Cases: Frequently applied to expensive optical devices such as aerospace and medical imaging equipment.
Asphericmeaning
The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Radius and Metrology Techniques: Choose the appropriate radius of curvature based on your system’s requirements. Understand the metrology techniques required for accurate measurement and verification of the aspheric surfaces.
Aspheric lenses have revolutionized the field of optics with their ability to correct spherical aberrations and improve optical performance. In this comprehensive guide, we delve into the world of aspheric lenses, including glass lens and plastic aspheric lenses, their advantages, manufacturing methods, specifications, and applications. Whether you’re a photographer using a camera lens, a scientist, or an engineer, understanding aspheric lenses and the optical axis is crucial in optimizing your optical systems.
Production of aspheric lenses is a very careful process that involves advanced technology and precise engineering. It starts with raw material and goes through several stages till the final product-a detailed guide on making an aspheric lens highlighting the most crucial steps that guarantee high quality lenses.
Aspheric lensesvs spherical
Complex Manufacturing Process: Aspheric lenses require more specialized manufacturing techniques compared to spherical lenses. The manufacturing process involves precise control of the lens surface profile, which can be challenging and time-consuming. This complexity often results in higher production costs for aspheric lenses.
There are plenty of materials that affect the polarization of light. Certain materials (such as calcite) exhibit a property known as birefringence. A crystal of birefringent material affects light polarized in a particular direction differently from light polarized at 90 degrees to that direction; it refracts light polarized one way at a different angle than it refracts light polarized the other way. Looking through a birefringent crystal at something, you'd see a double image. Liquid crystal displays, such as those in digital watches and calculators, also exploit the properties of polarized light. Polarization by reflection One way to polarize light is by reflection. If a beam of light strikes an interface so that there is a 90° angle between the reflected and refracted beams, the reflected beam will be linearly polarized. The direction of polarization (the way the electric field vectors point)is parallel to the plane of the interface. The special angle of incidence that satisfies this condition, where the reflected and refracted beams are perpendicular to each other, is known as the Brewster angle. The Brewster angle, the angle of incidence required to produce a linearly-polarized reflected beam, is given by: This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
If unpolarized light passes through a polarizer, the intensity of the transmitted light will be 1/2 of what it was coming in. If linearly polarized light passes through a polarizer, the intensity of the light transmitted is given by Malus' law: A third way to polarize light is by scattering. Light scattering off atoms and molecules in the atmosphere is unpolarized if the light keeps traveling in the same direction, is linearly polarized if at scatters in a direction perpendicular to the way it was traveling, and somewhere between linearly polarized and unpolarized if it scatters of at another angle. There are plenty of materials that affect the polarization of light. Certain materials (such as calcite) exhibit a property known as birefringence. A crystal of birefringent material affects light polarized in a particular direction differently from light polarized at 90 degrees to that direction; it refracts light polarized one way at a different angle than it refracts light polarized the other way. Looking through a birefringent crystal at something, you'd see a double image. Liquid crystal displays, such as those in digital watches and calculators, also exploit the properties of polarized light. Polarization by reflection One way to polarize light is by reflection. If a beam of light strikes an interface so that there is a 90° angle between the reflected and refracted beams, the reflected beam will be linearly polarized. The direction of polarization (the way the electric field vectors point)is parallel to the plane of the interface. The special angle of incidence that satisfies this condition, where the reflected and refracted beams are perpendicular to each other, is known as the Brewster angle. The Brewster angle, the angle of incidence required to produce a linearly-polarized reflected beam, is given by: This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
In the fast-moving optical technology world, custom aspheric lenses are the epitome of innovation, addressing very particular and special requirements. However, these lenses are not just ready-to-wear types; they are meticulously constructed and designed in order to meet their user’s exact desires. This article follows how custom aspheric lens designs originate from and who benefits from them.
The accurate measurement of aspheric surfaces is vital in verifying their quality and performance. Metrology techniques such as interferometry and profilometry are commonly used for aspheric surface characterization.
These lenses are available in various shapes, including plano-convex, plano-concave, biconvex, biconcave, and meniscus, each tailored for specific optical tasks. For instance, plano-convex aspheric lenses are often employed in applications requiring precise light focusing or collimation. On the other hand, meniscus aspheric lenses are adept at controlling aberrations in more complex optical systems.
Improved Light Transmission: Aspheric lenses have improved light transmission due to their optimized surface profile. This results in higher light throughput, allowing more light to reach the image sensor or retina. Improved light transmission enhances overall image brightness and quality, particularly in low-light conditions.
Sections 24.10 - 24.11 Polarization To talk about the polarization of an electromagnetic wave, it's easiest to look at polarized light. Just remember that whatever applies to light generally applies to other forms of electromagnetic waves, too. So, what is meant by polarized light? It's light in which there's a preferred direction for the electric and magnetic field vectors in the wave. In unpolarized light, there is no preferred direction: the waves come in with electric and magnetic field vectors in random directions. In linearly polarized light, the electric field vectors are all along one line (and so are the magnetic field vectors, because they're perpendicular to the electric field vectors). Most light sources emit unpolarized light, but there are several ways light can be polarized. One way to polarize light is by reflection. Light reflecting off a surface will tend to be polarized, with the direction of polarization (the way the electric field vectors point) being parallel to the plane of the interface. Another way to polarize light is by selectively absorbing light with electric field vectors pointing in a particular direction. Certain materials, known as dichroic materials, do this, absorbing light polarized one way but not absorbing light polarized perpendicular to that direction. If the material is thick enough to absorb all the light polarized in one direction, the light emerging from the material will be linearly polarized. Polarizers (such as the lenses of polarizing sunglasses) are made from this kind of material. If unpolarized light passes through a polarizer, the intensity of the transmitted light will be 1/2 of what it was coming in. If linearly polarized light passes through a polarizer, the intensity of the light transmitted is given by Malus' law: A third way to polarize light is by scattering. Light scattering off atoms and molecules in the atmosphere is unpolarized if the light keeps traveling in the same direction, is linearly polarized if at scatters in a direction perpendicular to the way it was traveling, and somewhere between linearly polarized and unpolarized if it scatters of at another angle. There are plenty of materials that affect the polarization of light. Certain materials (such as calcite) exhibit a property known as birefringence. A crystal of birefringent material affects light polarized in a particular direction differently from light polarized at 90 degrees to that direction; it refracts light polarized one way at a different angle than it refracts light polarized the other way. Looking through a birefringent crystal at something, you'd see a double image. Liquid crystal displays, such as those in digital watches and calculators, also exploit the properties of polarized light. Polarization by reflection One way to polarize light is by reflection. If a beam of light strikes an interface so that there is a 90° angle between the reflected and refracted beams, the reflected beam will be linearly polarized. The direction of polarization (the way the electric field vectors point)is parallel to the plane of the interface. The special angle of incidence that satisfies this condition, where the reflected and refracted beams are perpendicular to each other, is known as the Brewster angle. The Brewster angle, the angle of incidence required to produce a linearly-polarized reflected beam, is given by: This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Compact and Lightweight Design: Aspheric lenses can replace multiple spherical lenses, reducing the number of optical elements required in an optical system. This compact design not only saves space but also reduces the weight of devices such as cameras and eyewear. The lightweight nature of aspheric lenses enhances user comfort and portability.
Profilometry: Profilometers, including contact and non-contact types, are used to measure surface roughness, waviness, and form errors. These measurements help assess the surface quality and ensure compliance with the desired specifications.
Manufacturing Tolerances: Understand the manufacturing tolerances of the aspheric lenses, including diameter tolerance, surface quality tolerance, and form error tolerance. Consider the impact of these tolerances on your system’s performance.
The manufacture of aspheric lenses is a combination of art and science. These specialized techniques not only ensure high-quality optics, but also account for the special problems posed by aspheres. Here are five key methods used in making aspheric lenses.
One way to polarize light is by reflection. Light reflecting off a surface will tend to be polarized, with the direction of polarization (the way the electric field vectors point) being parallel to the plane of the interface. Another way to polarize light is by selectively absorbing light with electric field vectors pointing in a particular direction. Certain materials, known as dichroic materials, do this, absorbing light polarized one way but not absorbing light polarized perpendicular to that direction. If the material is thick enough to absorb all the light polarized in one direction, the light emerging from the material will be linearly polarized. Polarizers (such as the lenses of polarizing sunglasses) are made from this kind of material. If unpolarized light passes through a polarizer, the intensity of the transmitted light will be 1/2 of what it was coming in. If linearly polarized light passes through a polarizer, the intensity of the light transmitted is given by Malus' law: A third way to polarize light is by scattering. Light scattering off atoms and molecules in the atmosphere is unpolarized if the light keeps traveling in the same direction, is linearly polarized if at scatters in a direction perpendicular to the way it was traveling, and somewhere between linearly polarized and unpolarized if it scatters of at another angle. There are plenty of materials that affect the polarization of light. Certain materials (such as calcite) exhibit a property known as birefringence. A crystal of birefringent material affects light polarized in a particular direction differently from light polarized at 90 degrees to that direction; it refracts light polarized one way at a different angle than it refracts light polarized the other way. Looking through a birefringent crystal at something, you'd see a double image. Liquid crystal displays, such as those in digital watches and calculators, also exploit the properties of polarized light. Polarization by reflection One way to polarize light is by reflection. If a beam of light strikes an interface so that there is a 90° angle between the reflected and refracted beams, the reflected beam will be linearly polarized. The direction of polarization (the way the electric field vectors point)is parallel to the plane of the interface. The special angle of incidence that satisfies this condition, where the reflected and refracted beams are perpendicular to each other, is known as the Brewster angle. The Brewster angle, the angle of incidence required to produce a linearly-polarized reflected beam, is given by: This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Put your optical component needs in the hands of Chineselens Optics and our dedicated marketing team will quickly provide you with a customised response and solution.
Asphericlens benefits
This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
As a rule, anti-reflective or other special coatings are usually applied on aspheric lenses to improve their efficiency. This stage enhances the transmission of light while reducing reflections, especially in such applications as eyeglasses and camera lenses.
Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Another way to polarize light is by selectively absorbing light with electric field vectors pointing in a particular direction. Certain materials, known as dichroic materials, do this, absorbing light polarized one way but not absorbing light polarized perpendicular to that direction. If the material is thick enough to absorb all the light polarized in one direction, the light emerging from the material will be linearly polarized. Polarizers (such as the lenses of polarizing sunglasses) are made from this kind of material. If unpolarized light passes through a polarizer, the intensity of the transmitted light will be 1/2 of what it was coming in. If linearly polarized light passes through a polarizer, the intensity of the light transmitted is given by Malus' law: A third way to polarize light is by scattering. Light scattering off atoms and molecules in the atmosphere is unpolarized if the light keeps traveling in the same direction, is linearly polarized if at scatters in a direction perpendicular to the way it was traveling, and somewhere between linearly polarized and unpolarized if it scatters of at another angle. There are plenty of materials that affect the polarization of light. Certain materials (such as calcite) exhibit a property known as birefringence. A crystal of birefringent material affects light polarized in a particular direction differently from light polarized at 90 degrees to that direction; it refracts light polarized one way at a different angle than it refracts light polarized the other way. Looking through a birefringent crystal at something, you'd see a double image. Liquid crystal displays, such as those in digital watches and calculators, also exploit the properties of polarized light. Polarization by reflection One way to polarize light is by reflection. If a beam of light strikes an interface so that there is a 90° angle between the reflected and refracted beams, the reflected beam will be linearly polarized. The direction of polarization (the way the electric field vectors point)is parallel to the plane of the interface. The special angle of incidence that satisfies this condition, where the reflected and refracted beams are perpendicular to each other, is known as the Brewster angle. The Brewster angle, the angle of incidence required to produce a linearly-polarized reflected beam, is given by: This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
8-2-00 Sections 24.10 - 24.11 Polarization To talk about the polarization of an electromagnetic wave, it's easiest to look at polarized light. Just remember that whatever applies to light generally applies to other forms of electromagnetic waves, too. So, what is meant by polarized light? It's light in which there's a preferred direction for the electric and magnetic field vectors in the wave. In unpolarized light, there is no preferred direction: the waves come in with electric and magnetic field vectors in random directions. In linearly polarized light, the electric field vectors are all along one line (and so are the magnetic field vectors, because they're perpendicular to the electric field vectors). Most light sources emit unpolarized light, but there are several ways light can be polarized. One way to polarize light is by reflection. Light reflecting off a surface will tend to be polarized, with the direction of polarization (the way the electric field vectors point) being parallel to the plane of the interface. Another way to polarize light is by selectively absorbing light with electric field vectors pointing in a particular direction. Certain materials, known as dichroic materials, do this, absorbing light polarized one way but not absorbing light polarized perpendicular to that direction. If the material is thick enough to absorb all the light polarized in one direction, the light emerging from the material will be linearly polarized. Polarizers (such as the lenses of polarizing sunglasses) are made from this kind of material. If unpolarized light passes through a polarizer, the intensity of the transmitted light will be 1/2 of what it was coming in. If linearly polarized light passes through a polarizer, the intensity of the light transmitted is given by Malus' law: A third way to polarize light is by scattering. Light scattering off atoms and molecules in the atmosphere is unpolarized if the light keeps traveling in the same direction, is linearly polarized if at scatters in a direction perpendicular to the way it was traveling, and somewhere between linearly polarized and unpolarized if it scatters of at another angle. There are plenty of materials that affect the polarization of light. Certain materials (such as calcite) exhibit a property known as birefringence. A crystal of birefringent material affects light polarized in a particular direction differently from light polarized at 90 degrees to that direction; it refracts light polarized one way at a different angle than it refracts light polarized the other way. Looking through a birefringent crystal at something, you'd see a double image. Liquid crystal displays, such as those in digital watches and calculators, also exploit the properties of polarized light. Polarization by reflection One way to polarize light is by reflection. If a beam of light strikes an interface so that there is a 90° angle between the reflected and refracted beams, the reflected beam will be linearly polarized. The direction of polarization (the way the electric field vectors point)is parallel to the plane of the interface. The special angle of incidence that satisfies this condition, where the reflected and refracted beams are perpendicular to each other, is known as the Brewster angle. The Brewster angle, the angle of incidence required to produce a linearly-polarized reflected beam, is given by: This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Interferometry: Interferometric methods, such as white light interferometry and phase-shifting interferometry, are used to measure the surface shape and deviations from the desired aspheric profile. Interferometers provide high-resolution measurements and are widely used in the optics industry.
The special angle of incidence that satisfies this condition, where the reflected and refracted beams are perpendicular to each other, is known as the Brewster angle. The Brewster angle, the angle of incidence required to produce a linearly-polarized reflected beam, is given by: This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Disadvantages ofaspheric lenses
The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
By carefully considering these factors, you can select the most suitable aspheric lenses for your optical system and ensure optimal performance.
Limited Availability: Aspheric lenses may not be as widely available as spherical lenses, particularly in certain sizes and specifications. This limited availability can make it more challenging to source specific aspheric lenses for custom applications or niche markets.
Areaspheric lensesbetter
Once the material has been decided upon, it is shaped into a rough lens blank. This can be done using molding or machining methods depending on the material and precision required.
Improved Optical Performance: Aspheric lenses provide improved optical performance compared to spherical lenses. By correcting aberrations such as coma, astigmatism, and distortion, aspheric lenses deliver higher image quality and resolution. This improvement in optical performance is particularly noticeable in wide-angle and high-power lenses.
Interferometry and Profilometry: Interferometric methods, such as white light interferometry and phase-shifting interferometry, are used to measure the surface shape and deviations from the desired aspheric profile. Profilometers, including contact and non-contact types, are used to measure surface roughness, waviness, and form errors. These measurements help assess the surface quality and ensure compliance with the desired specifications.
Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
To talk about the polarization of an electromagnetic wave, it's easiest to look at polarized light. Just remember that whatever applies to light generally applies to other forms of electromagnetic waves, too. So, what is meant by polarized light? It's light in which there's a preferred direction for the electric and magnetic field vectors in the wave. In unpolarized light, there is no preferred direction: the waves come in with electric and magnetic field vectors in random directions. In linearly polarized light, the electric field vectors are all along one line (and so are the magnetic field vectors, because they're perpendicular to the electric field vectors). Most light sources emit unpolarized light, but there are several ways light can be polarized. One way to polarize light is by reflection. Light reflecting off a surface will tend to be polarized, with the direction of polarization (the way the electric field vectors point) being parallel to the plane of the interface. Another way to polarize light is by selectively absorbing light with electric field vectors pointing in a particular direction. Certain materials, known as dichroic materials, do this, absorbing light polarized one way but not absorbing light polarized perpendicular to that direction. If the material is thick enough to absorb all the light polarized in one direction, the light emerging from the material will be linearly polarized. Polarizers (such as the lenses of polarizing sunglasses) are made from this kind of material. If unpolarized light passes through a polarizer, the intensity of the transmitted light will be 1/2 of what it was coming in. If linearly polarized light passes through a polarizer, the intensity of the light transmitted is given by Malus' law: A third way to polarize light is by scattering. Light scattering off atoms and molecules in the atmosphere is unpolarized if the light keeps traveling in the same direction, is linearly polarized if at scatters in a direction perpendicular to the way it was traveling, and somewhere between linearly polarized and unpolarized if it scatters of at another angle. There are plenty of materials that affect the polarization of light. Certain materials (such as calcite) exhibit a property known as birefringence. A crystal of birefringent material affects light polarized in a particular direction differently from light polarized at 90 degrees to that direction; it refracts light polarized one way at a different angle than it refracts light polarized the other way. Looking through a birefringent crystal at something, you'd see a double image. Liquid crystal displays, such as those in digital watches and calculators, also exploit the properties of polarized light. Polarization by reflection One way to polarize light is by reflection. If a beam of light strikes an interface so that there is a 90° angle between the reflected and refracted beams, the reflected beam will be linearly polarized. The direction of polarization (the way the electric field vectors point)is parallel to the plane of the interface. The special angle of incidence that satisfies this condition, where the reflected and refracted beams are perpendicular to each other, is known as the Brewster angle. The Brewster angle, the angle of incidence required to produce a linearly-polarized reflected beam, is given by: This expression can be derived using Snell's law, and the law of reflection. The diagram below shows some of the geometry involved. Using Snell's law: The scattering of light in the atmosphere The way light scatters off molecules in the atmosphere explains why the sky is blue and why the sun looks red at sunrise and sunset. In a nutshell, it's because the molecules scatter light at the blue end of the visible spectrum much more than light at the red end of the visible spectrum. This is because the scattering of light (i.e., the probability that light will interact with molecules when it passes through the atmosphere) is inversely proportional to the wavelength to the fourth power. Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Violet light, with a wavelength of about 400 nm, is almost 10 times as likely to be scattered than red light, which has a wavelength of about 700 nm. At noon, when the Sun is high in the sky, light from the Sun passes through a relatively thin layer of atmosphere, so only a small fraction of the light will be scattered. The Sun looks yellow-white because all the colors are represented almost equally. At sunrise or sunset, on the other hand, light from the Sun has to pass through much more atmosphere to reach our eyes. Along the way, most of the light towards the blue end of the spectrum is scattered in other directions, but much less of the light towards the red end of the spectrum is scattered, making the Sun appear to be orange or red. So why is the sky blue? Again, let's look at it when the Sun is high in the sky. Some of the light from the Sun traveling towards other parts of the Earth is scattered towards us by the molecules in the atmosphere. Most of this scattered light is light from the blue end of the spectrum, so the sky appears blue. Why can't this same argument be applied to clouds? Why do they look white, and not blue? It's because of the size of the water droplets in clouds. The droplets are much larger than the molecules in the atmosphere, and they scatter light of all colors equally. This makes them look white. Back to the course schedule
Aspheric Lensesprice
Reduced Lens Aberrations: Same as achromatic lenses, aspheric lenses help minimize various aberrations, including chromatic aberration, field curvature, and astigmatism. Chromatic aberration, which causes color fringing, is reduced in aspheric lenses, resulting in more accurate color reproduction. Field curvature, the curvature of the focal plane, is also better controlled in aspheric lenses, resulting in sharper focus across the entire image. Astigmatism, which causes distorted and elongated images, is corrected or minimized in aspheric lenses, leading to clearer and more accurate images.
Lastly, each of these aspheric lenses has to undergo rigorous quality control as well as testing to ensure it meets required optical standards. Such processes involve examining aspects like precision pertaining to surfaces used, transparency and types of aberrations.
Diamond turning is an advanced manufacturing process that uses diamond cutting tools to shape lens materials with exceptional accuracy. Prototype development or use of non-moldable materials are some examples where this method can be useful for. • Advantages: Offers flexibility in terms of both material choice and design plus affords great precision. • Use Cases: Used when producing infrared optics or creating high-precision custom lens shapes.
Molded Polymer Aspheres are similar to PGM except they utilize polymer materials instead of glass. This results in lightweight and cost-effective lens options. • Advantages: MPA is cheaper than glass, yet allows sufficient light transmission so long as it’s durably made. • Use Cases: Mass-market eyewear or other optics for consumers.
The aspheric design allows for the correction of spherical aberration—a common issue in spherical lenses where light rays converge at different points, leading to blurred or distorted images. By fine-tuning the surface profile of aspheric lenses, optical designers achieve a level of control over the light path that is impossible with traditional spherical lenses.
Aspheric lenses offer several advantages over traditional spherical lenses, making them a popular choice in various optical systems. However, it is important to consider the disadvantages as well. Let’s explore the advantages and disadvantages of aspheric lenses in more detail.