There are acousto-optic tunable filters, where it is exploited that Bragg reflection at an acoustic wave works only within a narrow frequency range.

OPTOMAN optical filter coating designs are available in short pass, long pass or bandpass configurations. Our IBS-coated optics are optimized for high power applications and feature spectral drift-free performance, which is why very sharp edge configurations are feasible.

Optical notch filterprice

Please do not enter personal data here. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

An optical filter is usually meant to be a component with a wavelength-dependent (actually frequency-dependent) transmittance or reflectance, although there are also filters where the dependence is on polarization or spatial distribution, or some uniform level of attenuation is provided. Filters with particularly weak wavelength dependence of the transmittance are called neutral density filters.

Also in 1936, a much improved photocathode, Cs3Sb (caesium-antimony), was reported by P. Görlich.[15] The caesium-antimony photocathode had a dramatically improved quantum efficiency of 12% at 400 nm, and was used in the first commercially successful photomultipliers manufactured by RCA (i.e., the 931-type) both as a photocathode and as a secondary-emitting material for the dynodes. Different photocathodes provided differing spectral responses.

The Lancaster, Pennsylvania facility was opened by the U.S. Navy in 1942 and operated by RCA for the manufacture of radio and microwave tubes. Following World War II, the naval facility was acquired by RCA. RCA Lancaster, as it became known, was the base for the development and the production of commercial television products. In subsequent years other products were added, such as cathode-ray tubes, photomultiplier tubes, motion-sensing light control switches, and closed-circuit television systems.

Higher gains were sought than those available from the early single-stage photomultipliers. However, it is an empirical fact that the yield of secondary electrons is limited in any given secondary emission process, regardless of acceleration voltage. Thus, any single-stage photomultiplier is limited in gain. At the time the maximum first-stage gain that could be achieved was approximately 10 (very significant developments in the 1960s permitted gains above 25 to be reached using negative electron affinity dynodes). For this reason, multiple-stage photomultipliers, in which the photoelectron yield could be multiplied successively in several stages, were an important goal. The challenge was to cause the photoelectrons to impinge on successively higher-voltage electrodes rather than to travel directly to the highest voltage electrode. Initially this challenge was overcome by using strong magnetic fields to bend the electrons' trajectories. Such a scheme had earlier been conceived by inventor J. Slepian by 1919 (see above). Accordingly, leading international research organizations turned their attention towards improving photomultipliers to achieve higher gain with multiple stages.

ThorlabsNotch Filter

While powered (energized), photomultipliers must be shielded from ambient light to prevent their destruction through overexcitation. In some applications this protection is accomplished mechanically by electrical interlocks or shutters that protect the tube when the photomultiplier compartment is opened. Another option is to add overcurrent protection in the external circuit, so that when the measured anode current exceeds a safe limit, the high voltage is reduced.

The first demonstration of the photoelectric effect was carried out in 1887 by Heinrich Hertz using ultraviolet light.[2] Significant for practical applications, Elster and Geitel two years later demonstrated the same effect using visible light striking alkali metals (potassium and sodium).[3] The addition of caesium, another alkali metal, has permitted the range of sensitive wavelengths to be extended towards longer wavelengths in the red portion of the visible spectrum.

Notch filterQ factor

Edmund Optics offers a variety of optical filters for many applications, including bandpass interference, notch, edge, dichroic, color substrate, or ND. Edmund Optics also offers highly durable hard coatings for applications that require high optical densities with maximum performance.

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.

Photomultiplier tubes (photomultipliers or PMTs for short) are extremely sensitive detectors of light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum. They are members of the class of vacuum tubes, more specifically vacuum phototubes. These detectors multiply the current produced by incident light by as much as 100 million times or 108 (i.e., 160 dB),[1] in multiple dynode stages, enabling (for example) individual photons to be detected when the incident flux of light is low.

Notch filterdesign

RFnotch filter

By using such spectral filters, researchers from Prof. Krausz’s group were able to build a so-called wave synthesizer. We were able to split or combine radiation from 250 to 1100 nm in four channels: 250–290, 290–350, 350–500, and 500–1100 nm. The phases of reflection and transmission are controlled. This allows one to precisely combine radiation from four channels, both spatially and temporally, resulting in the generation of sub-optical-cycle pulses. Based on that technology, we have developed the first commercial light field synthesizer.

The excellent know-how in the FBG manufacturing process gives Exail the capability to produce various filters on a variety of in house fibers. We stand ready to adapt our services to your needs from quick prototyping to volume production.

IRD Glass custom manufactures optical filters that expand the applications and improve the capabilities of almost any optical component. IRD works with a variety of filter glass materials from all the leading filter glass manufacturers: Schott, Kopp, Ohara, Hoya and others. IRD Glass also has the capability to apply thin-film optical coatings, from UV through IR spectrum.

The combination of high gain, low noise, high frequency response or, equivalently, ultra-fast response, and large area of collection has maintained photomultipliers an essential place in low light level spectroscopy, confocal microscopy, Raman spectroscopy, fluorescence spectroscopy, nuclear and particle physics, astronomy, medical diagnostics including blood tests, medical imaging, motion picture film scanning (telecine), radar jamming, and high-end image scanners known as drum scanners. Elements of photomultiplier technology, when integrated differently, are the basis of night vision devices. Research that analyzes light scattering, such as the study of polymers in solution, often uses a laser and a PMT to collect the scattered light data.

Such a narrow bandwidth is not feasible with a filter based on dielectric coatings; you will need some kind of larger resonator – for example, a Fabry–Perot interferometer made of two dielectric mirrors.

On 9 March 2009, Photonis announced that it would cease all production of photomultipliers at both the Lancaster, Pennsylvania and the Brive, France plants.[19]

The phenomenon of secondary emission (the ability of electrons in a vacuum tube to cause the emission of additional electrons by striking an electrode) was, at first, limited to purely electronic phenomena and devices (which lacked photosensitivity). In 1899 the effect was first reported by Villard.[5] In 1902, Austin and Starke reported that the metal surfaces impacted by electron beams emitted a larger number of electrons than were incident.[6] The application of the newly discovered secondary emission to the amplification of signals was only proposed after World War I by Westinghouse scientist Joseph Slepian in a 1919 patent.[7]

Opposite ofnotch filter

Various kinds of optical filters are based on interference effects, combined with wavelength-dependent phase shifts during propagation. Such filters – called interference filters – exhibit wavelength-dependent reflection and transmission, and the light which is filtered out can be sent to some beam dump, which can tolerate high optical powers.

The necessary distribution of voltage along the series of dynodes is created by a voltage divider chain, as illustrated in Fig. 2. In the example, the photocathode is held at a negative high voltage on the order of 1000 V, while the anode is very close to ground potential. The capacitors across the final few dynodes act as local reservoirs of charge to help maintain the voltage on the dynodes while electron avalanches propagate through the tube. Many variations of design are used in practice; the design shown is merely illustrative.

The invention of the photomultiplier is predicated upon two prior achievements, the separate discoveries of the photoelectric effect and of secondary emission.

Optical notch filterfor sale

The windows of the photomultipliers act as wavelength filters; this may be irrelevant if the cutoff wavelengths are outside of the application range or outside of the photocathode sensitivity range, but special care has to be taken for uncommon wavelengths. Borosilicate glass is commonly used for near-infrared to about 300 nm. High borate borosilicate glasses exist also in high UV transmission versions with high transmission also at 254 nm.[22] Glass with very low content of potassium can be used with bialkali photocathodes to lower the background radiation from the potassium-40 isotope. Ultraviolet glass transmits visible and ultraviolet down to 185 nm. Used in spectroscopy. Synthetic silica transmits down to 160 nm, absorbs less UV than fused silica. Different thermal expansion than kovar (and than borosilicate glass that's expansion-matched to kovar), a graded seal needed between the window and the rest of the tube. The seal is vulnerable to mechanical shocks. Magnesium fluoride transmits ultraviolet down to 115 nm. Hygroscopic, though less than other alkali halides usable for UV windows.

Shalom EO offers a vast variety of optical filters of both reflective and absorbing type: bandpass filters, neutral density filters, dichroic filters, notch filters, colored glass absorptive filters, IR filters and laser line filters.

Photomultiplier tubes typically utilize 1000 to 2000 volts to accelerate electrons within the chain of dynodes. (See Figure near top of article.) The most negative voltage is connected to the cathode, and the most positive voltage is connected to the anode. Negative high-voltage supplies (with the positive terminal grounded) are often preferred, because this configuration enables the photocurrent to be measured at the low voltage side of the circuit for amplification by subsequent electronic circuits operating at low voltage. However, with the photocathode at high voltage, leakage currents sometimes result in unwanted "dark current" pulses that may affect the operation. Voltages are distributed to the dynodes by a resistive voltage divider, although variations such as active designs (with transistors or diodes) are possible. The divider design, which influences frequency response or rise time, can be selected to suit varying applications. Some instruments that use photomultipliers have provisions to vary the anode voltage to control the gain of the system.

Universe Kogaku offers various lens filters and accessories, specifically UV and IR band pass filters for use with our UV quartz lenses.

UM Optics currently has six different coating machines, including one for diamond-like carbon (DLC) and two for broadband anti-reflection coatings. We mainly produce infrared anti-reflection coatings, infrared filters, and diamond-like carbon coatings, providing customers with various coating services and products.

There are two common photomultiplier orientations, the head-on or end-on (transmission mode) design, as shown above, where light enters the flat, circular top of the tube and passes the photocathode, and the side-on design (reflection mode), where light enters at a particular spot on the side of the tube, and impacts on an opaque photocathode. The side-on design is used, for instance, in the type 931, the first mass-produced PMT. Besides the different photocathode materials, performance is also affected by the transmission of the window material that the light passes through, and by the arrangement of the dynodes. Many photomultiplier models are available having various combinations of these, and other, design variables. The manufacturers manuals provide the information needed to choose an appropriate design for a particular application.

In 2005, after eighteen years as an independent enterprise, Burle Industries and a key subsidiary were acquired by Photonis, a European holding company Photonis Group. Following the acquisition, Photonis was composed of Photonis Netherlands, Photonis France, Photonis USA, and Burle Industries. Photonis USA operates the former Galileo Corporation Scientific Detector Products Group (Sturbridge, Massachusetts), which had been purchased by Burle Industries in 1999. The group is known for microchannel plate detector (MCP) electron multipliers—an integrated micro-vacuum tube version of photomultipliers. MCPs are used for imaging and scientific applications, including night vision devices.

For decades, RCA was responsible for performing the most important work in developing and refining photomultipliers. RCA was also largely responsible for the commercialization of photomultipliers. The company compiled and published an authoritative and widely used Photomultiplier Handbook.[18] RCA provided printed copies free upon request. The handbook, which continues to be made available online at no cost by the successors to RCA, is considered to be an essential reference.

Nonetheless, the ability to detect single photons striking the primary photosensitive surface itself reveals the quantization principle that Einstein put forth. Photon counting (as it is called) reveals that light, not only being a wave, consists of discrete particles (i.e., photons).

Knight Optical's offers a large variety of stock and custom optical filters. Our bandpass, shortpass, and longpass filters are available as different filter types each with their own advantage including colour glass filters, dichroic filters, and interference bandpass filters. We also offer heat control filters. IR cut filters, neutral density (ND) filters, and Wratten filters. Knight Optical also have a fluorescence filter sets compatible with certain fluorophores, these consist of an excitation and emission filter, as well as a dichroic mirror.

Lyot filters are based on wavelength-dependent polarization changes. Similar devices are used as birefringent tuners in tunable lasers.

Note: this box searches only for keywords in the titles of articles, and for acronyms. For full-text searches on the whole website, use our search page.

Historically, the photoelectric effect is associated with Albert Einstein, who relied upon the phenomenon to establish the fundamental principle of quantum mechanics in 1905,[4] an accomplishment for which Einstein received the 1921 Nobel Prize. It is worthwhile to note that Heinrich Hertz, working 18 years earlier, had not recognized that the kinetic energy of the emitted electrons is proportional to the frequency but independent of the optical intensity. This fact implied a discrete nature of light, i.e. the existence of quanta, for the first time.

For smaller photon fluxes, the photomultiplier can be operated in photon-counting, or Geiger, mode (see also Single-photon avalanche diode). In Geiger mode the photomultiplier gain is set so high (using high voltage) that a single photo-electron resulting from a single photon incident on the primary surface generates a very large current at the output circuit. However, owing to the avalanche of current, a reset of the photomultiplier is required. In either case, the photomultiplier can detect individual photons. The drawback, however, is that not every photon incident on the primary surface is counted either because of less-than-perfect efficiency of the photomultiplier, or because a second photon can arrive at the photomultiplier during the "dead time" associated with a first photon and never be noticed.

Note: the article keyword search field and some other of the site's functionality would require Javascript, which however is turned off in your browser.

Exail offers a broad range of Fiber Bragg Gratings (FBG) to address a wide array of applications in telecommunications, sensing, harsh environments, research and development, etc.

Ecoptik produces glass filters of different types (absorbing or with thin film coating) for selecting certain radiation bands. We can make many different types and custom optical filters, such as optical comb filters, high/low pass filters and linear variable filters.

We offer a complete design and manufacture service for optical filters from 300–6000 nm, all deposited using sputter deposition to ensure excellent environmental properties, adherence to very demanding optical requirements and a cost effective solution. Prototype volumes to many tens of thousands all covered.

While most types of optical filters exhibit fixed optical characteristics, some types are tunable, i.e., their optical characteristics can be actively modified. Some examples:

Shanghai Optics manufactures a wide range of custom optical filters for engineering, scientific, and photographic applications.

Semiconductor devices, particularly silicon photomultipliers and avalanche photodiodes, are alternatives to classical photomultipliers; however, photomultipliers are uniquely well-suited for applications requiring low-noise, high-sensitivity detection of light that is imperfectly collimated.

The Japan-based company Hamamatsu Photonics (also known as Hamamatsu) has emerged since the 1950s as a leader in the photomultiplier industry. Hamamatsu, in the tradition of RCA, has published its own handbook, which is available without cost on the company's website.[20] Hamamatsu uses different designations for particular photocathode formulations and introduces modifications to these designations based on Hamamatsu's proprietary research and development.

DayOptics offers various types of of optical filters for industrial measurement, environmental protection and other fields. We provide long-wave pass filters, narrow-band filters, band-pass filters, colored glass filters, etc. Size and coating requirements can be customized.

Yes, e.g. with a combination of a resonator and some other (more broadband) filter for suppressing the unwanted resonance peaks.

Apart from step-index structures, there are also gradient-index filters, called rugate filters. That approach allows one to make high-quality notch filters, for example.

Notch filterschematic

Following a corporate break-up in the late 1980s involving the acquisition of RCA by General Electric and disposition of the divisions of RCA to numerous third parties, RCA's photomultiplier business became an independent company.

After 50 years, during which solid-state electronic components have largely displaced the vacuum tube, the photomultiplier remains a unique and important optoelectronic component. Perhaps its most useful quality is that it acts, electronically, as a nearly perfect current source, owing to the high voltage utilized in extracting the tiny currents associated with weak light signals. There is no Johnson noise associated with photomultiplier signal currents, even though they are greatly amplified, e.g., by 100 thousand times (i.e., 100 dB) or more. The photocurrent still contains shot noise.

Laserton has various types of optical filters, including color class filters, birefringent filters, neutral density filters (absorptive or reflective, also versions with variable transmission) and bandpass interference filters.

In the USSR, RCA-manufactured radio equipment was introduced on a large scale by Joseph Stalin to construct broadcast networks, and the newly formed All-Union Scientific Research Institute for Television was gearing up a research program in vacuum tubes that was advanced for its time and place. Numerous visits were made by RCA scientific personnel to the USSR in the 1930s, prior to the Cold War, to instruct the Soviet customers on the capabilities of RCA equipment and to investigate customer needs.[9] During one of these visits, in September 1934, RCA's Vladimir Zworykin was shown the first multiple-dynode photomultiplier, or photoelectron multiplier. This pioneering device was proposed by Leonid A. Kubetsky in 1930[10] which he subsequently built in 1934. The device achieved gains of 1000x or more when demonstrated in June 1934. The work was submitted for print publication only two years later, in July 1936[11] as emphasized in a recent 2006 publication of the Russian Academy of Sciences (RAS),[12] which terms it "Kubetsky's Tube." The Soviet device used a magnetic field to confine the secondary electrons and relied on the Ag-O-Cs photocathode which had been demonstrated by General Electric in the 1920s.

Burle Industries, as a successor to the RCA Corporation, carried the RCA photomultiplier business forward after 1986, based in the Lancaster, Pennsylvania facility. The 1986 acquisition of RCA by General Electric resulted in the divestiture of the RCA Lancaster New Products Division. Hence, 45 years after being founded by the U.S. Navy, its management team, led by Erich Burlefinger, purchased the division and in 1987 founded Burle Industries.

By October 1935, Vladimir Zworykin, George Ashmun Morton, and Louis Malter of RCA in Camden, NJ submitted their manuscript describing the first comprehensive experimental and theoretical analysis of a multiple dynode tube — the device later called a photomultiplier[13] — to Proc. IRE. The RCA prototype photomultipliers also used an Ag-O-Cs (silver oxide-caesium) photocathode. They exhibited a peak quantum efficiency of 0.4% at 800 nm.

It is known that at cryogenic temperatures photo multipliers demonstrate increase in (bursting) electrons emission as temperature lowers. This phenomenon is still unexplained by any physics theory.[24]

Photomultipliers were the first electric eye devices, being used to measure interruptions in beams of light. Photomultipliers are used in conjunction with scintillators to detect Ionizing radiation by means of hand held and fixed radiation protection instruments, and particle radiation in physics experiments.[23] Photomultipliers are used in research laboratories to measure the intensity and spectrum of light-emitting materials such as compound semiconductors and quantum dots. Photomultipliers are used as the detector in many spectrophotometers. This allows an instrument design that escapes the thermal noise limit on sensitivity, and which can therefore substantially increase the dynamic range of the instrument.

UltraFast Innovations (UFI®) provides spectral filters for ultrashort pulse applications – for example, for preserving the pulse duration of reflected or transmitted pulses.

The BEBOP can be tuned from 350 nm to 850 nm with a bandwidth between 7 nm and 100 nm. It reaches a transmittance of up to 90% and a blocking OD of >4. You can have a free-space output beam or a fiber-coupled output, and there is an additional infrared output.

The first documented photomultiplier demonstration dates to the early 1934 accomplishments of an RCA group based in Harrison, NJ. Harley Iams and Bernard Salzberg were the first to integrate a photoelectric-effect cathode and single secondary emission amplification stage in a single vacuum envelope and the first to characterize its performance as a photomultiplier with electron amplification gain. These accomplishments were finalized prior to June 1934 as detailed in the manuscript submitted to Proceedings of the Institute of Radio Engineers (Proc. IRE).[8] The device consisted of a semi-cylindrical photocathode, a secondary emitter mounted on the axis, and a collector grid surrounding the secondary emitter. The tube had a gain of about eight and operated at frequencies well above 10 kHz.

The ingredients for inventing the photomultiplier were coming together during the 1920s as the pace of vacuum tube technology accelerated. The primary goal for many, if not most, workers was the need for a practical television camera technology. Television had been pursued with primitive prototypes for decades prior to the 1934 introduction of the first practical video camera (the iconoscope). Early prototype television cameras lacked sensitivity. Photomultiplier technology was pursued to enable television camera tubes, such as the iconoscope and (later) the orthicon, to be sensitive enough to be practical. So the stage was set to combine the dual phenomena of photoemission (i.e., the photoelectric effect) with secondary emission, both of which had already been studied and adequately understood, to create a practical photomultiplier.

The same physical principle is used in fiber Bragg gratings and other optical Bragg gratings such as volume Bragg gratings.

Artifex Engineering offers custom absorption filters and dielectric filters in almost any design. Bandpass, long pass, short pass or ND filters can be tailored to your wavelength range. The filters can be cut to any shape. Black anodized aluminium rings may be provided for ease of mounting. Visit our product page for more information. We look forward to your inquiry.

Optical filters selectively allow certain wavelengths of light to pass freely while blocking other wavelengths. Avantier manufactures a wide range of optical filters for engineering, scientific, and photographic applications.

The electron multiplier consists of a number of electrodes called dynodes. Each dynode is held at a more positive potential, by ≈100 Volts, than the preceding one. A primary electron leaves the photocathode with the energy of the incoming photon, or about 3 eV for "blue" photons, minus the work function of the photocathode. A small group of primary electrons is created by the arrival of a group of initial photons. (In Fig. 1, the number of primary electrons in the initial group is proportional to the energy of the incident high energy gamma ray.) The primary electrons move toward the first dynode because they are accelerated by the electric field. They each arrive with ≈100 eV kinetic energy imparted by the potential difference. Upon striking the first dynode, more low energy electrons are emitted, and these electrons are in turn accelerated toward the second dynode. The geometry of the dynode chain is such that a cascade occurs with an exponentially-increasing number of electrons being produced at each stage. For example, if at each stage an average of 5 new electrons are produced for each incoming electron, and if there are 12 dynode stages, then at the last stage one expects for each primary electron about 512 ≈ 108 electrons. This last stage is called the anode. This large number of electrons reaching the anode results in a sharp current pulse that is easily detectable, for example on an oscilloscope, signaling the arrival of the photon(s) at the photocathode ≈50 nanoseconds earlier.

More specific terms: interference filters, dichroic mirrors, rugate filters, etalons, Fabry–Pérot interferometers, diffraction gratings, birefringent tuners, acousto-optic tunable filters, cold mirrors, hot mirrors

If used in a location with strong magnetic fields, which can curve electron paths, steer the electrons away from the dynodes and cause loss of gain, photomultipliers are usually magnetically shielded by a layer of soft iron or mu-metal. This magnetic shield is often maintained at cathode potential. When this is the case, the external shield must also be electrically insulated because of the high voltage on it. Photomultipliers with large distances between the photocathode and the first dynode are especially sensitive to magnetic fields.[21]

LEUKOS offers the widely tunable filter BEBOP. Combine this with our supercontinuum source Rock to obtain a broadband tunable light source.

Fabry–Pérot interferometers, etalons and arrayed waveguide gratings are also based on interference effects, but sometimes exploiting substantially larger path length differences than monolithic devices. Therefore, they can have sharper spectral features.

Photomultiplier-amplified photocurrents can be electronically amplified by a high-input-impedance electronic amplifier (in the signal path subsequent to the photomultiplier), thus producing appreciable voltages even for nearly infinitesimally small photon fluxes. Photomultipliers offer the best possible opportunity to exceed the Johnson noise for many configurations. The aforementioned refers to measurement of light fluxes that, while small, nonetheless amount to a continuous stream of multiple photons.

World leader in Fiber Bragg grating and Fabry Perot filters. Product portfolio includes athermal Fabry–Perot etalons (TWR30) and athermal FBGs (TWR50), as well as tunable FBGs (T10-T980) and tunable Fabry–Perot filters (TFP10-TFP50).

The photocathodes can be made of a variety of materials, with different properties. Typically the materials have low work function and are therefore prone to thermionic emission, causing noise and dark current, especially the materials sensitive in infrared; cooling the photocathode lowers this thermal noise. The most common photocathode materials are[21] Ag-O-Cs (also called S1) transmission-mode, sensitive from 300–1200 nm. High dark current; used mainly in near-infrared, with the photocathode cooled; GaAs:Cs, caesium-activated gallium arsenide, flat response from 300 to 850 nm, fading towards ultraviolet and to 930 nm; InGaAs:Cs, caesium-activated indium gallium arsenide, higher infrared sensitivity than GaAs:Cs, between 900–1000 nm much higher signal-to-noise ratio than Ag-O-Cs; Sb-Cs, (also called S11) caesium-activated antimony, used for reflective mode photocathodes; response range from ultraviolet to visible, widely used; bialkali (Sb-K-Cs, Sb-Rb-Cs), caesium-activated antimony-rubidium or antimony-potassium alloy, similar to Sb:Cs, with higher sensitivity and lower noise. can be used for transmission-mode; favorable response to a NaI:Tl scintillator flashes makes them widely used in gamma spectroscopy and radiation detection; high-temperature bialkali (Na-K-Sb), can operate up to 175 °C, used in well logging, low dark current at room temperature; multialkali (Na-K-Sb-Cs), (also called S20), wide spectral response from ultraviolet to near-infrared, special cathode processing can extend range to 930 nm, used in broadband spectrophotometers; solar-blind (Cs-Te, Cs-I), sensitive to vacuum-UV and ultraviolet, insensitive to visible light and infrared (Cs-Te has cutoff at 320 nm, Cs-I at 200 nm).

Exail (formerly iXblue)’s gain flattening filter based on fiber Bragg grating technology represents an easy and effective solution to flatten the gain in a WDM systems. The high accuracy (very low ripple) allows the use of cascaded filters, and the return loss is high (low reflections).

An important class of interference-based filters contains dielectric coatings. Such coatings are used in dielectric mirrors (including dichroic mirrors), but also in thin-film polarizers, and in polarizing and non-polarizing beam splitters. Via thin-film design it is possible to realize edge filters, low-pass, high-pass and band-pass filters, notch filters, etc.

Using our advertising package, you can display your logo, further below your product description, and these will been seen by many photonics professionals.

EKSMA Optics has introduced OD 6.0 notch filters for specific laser wavelengths in the range from 488 nm to 561 nm. Other filter choices are: neutral density reflective type filters designed to operate in the 400–2000 nm range, neutral density absorption type filters designed to operate at VIS wavelengths (450–650 nm) and Schott color glass filters.

A photomultiplier will produce a small current even without incident photons; this is called the dark current. Photon-counting applications generally demand photomultipliers designed to minimise dark current.

Image

The IXC-FBG-PS bandpass filter has a sharp resonance peak in the transmission spectrum with less than 1 dB of insertion loss. It can be used in telecom as well as in sensing applications, also for distributed feedback (DFB) fiber lasers.

We have a laser beam with several wavelength components. For example, we want to separate 780.00 nm from 780.04 nm, and can afford to discard one of the two beams; the other beam we want to use. I know the wavelengths are very close to each other, but is there a way to achieve this in practice? It would be really great to have a bandpass filter with 0.04 nm bandwidth.

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

In the early 1940s, the JEDEC (Joint Electron Device Engineering Council), an industry committee on standardization, developed a system of designating spectral responses.[16] The philosophy included the idea that the product's user need only be concerned about the response of the device rather than how the device may be fabricated. Various combinations of photocathode and window materials were assigned "S-numbers" (spectral numbers) ranging from S-1 through S-40, which are still in use today. For example, S-11 uses the caesium-antimony photocathode with a lime glass window, S-13 uses the same photocathode with a fused silica window, and S-25 uses a so-called "multialkali" photocathode (Na-K-Sb-Cs, or sodium-potassium-antimony-caesium) that provides extended response in the red portion of the visible light spectrum. No suitable photoemissive surfaces have yet been reported to detect wavelengths longer than approximately 1700 nanometers, which can be approached by a special (InP/InGaAs(Cs)) photocathode.[17]

Other filters are based on wavelength-dependent refraction in prisms (or prism pairs) or on wavelength-dependent diffraction at gratings, combined with an aperture.

Photomultipliers are used in numerous medical equipment designs. For example, blood analysis devices used by clinical medical laboratories, such as flow cytometers, utilize photomultipliers to determine the relative concentration of various components in blood samples, in combination with optical filters and incandescent lamps. An array of photomultipliers is used in a gamma camera. Photomultipliers are typically used as the detectors in flying-spot scanners.

Whereas these early photomultipliers used the magnetic field principle, electrostatic photomultipliers (with no magnetic field) were demonstrated by Jan Rajchman of RCA Laboratories in Princeton, NJ in the late 1930s and became the standard for all future commercial photomultipliers. The first mass-produced photomultiplier, the Type 931, was of this design and is still commercially produced today.[14]

Absorbing glass filters, dye filters, and color filters are based on intrinsic or extrinsic wavelength-dependent absorption in some material such as e.g. a glass, a polymer material or a semiconductor. For example, one may exploit the intrinsic short-wavelength absorption of a semiconductor, or extrinsic absorption caused by certain ionic impurities or by semiconductor nanoparticles in a glass. As the absorbed light is converted into heat, such filters are usually not suitable for high-power optical radiation.

Photomultipliers are typically constructed with an evacuated glass housing (using an extremely tight and durable glass-to-metal seal like other vacuum tubes), containing a photocathode, several dynodes, and an anode. Incident photons strike the photocathode material, which is usually a thin vapor-deposited conducting layer on the inside of the entry window of the device. Electrons are ejected from the surface as a consequence of the photoelectric effect. These electrons are directed by the focusing electrode toward the electron multiplier, where electrons are multiplied by the process of secondary emission.