Lidaris - fluence laser
Blister in the SunDeutsch
Wir helfen Millionen von Menschen, Unternehmen und Organisationen, effizienter und präziser in allen Sprachen zu kommunizieren.
The absorption of photons creates both a majority and a minority carrier. In many photovoltaic applications, the number of light-generated carriers are of orders of magnitude less than the number of majority carriers already present in the solar cell due to doping. Consequently, the number of majority carriers in an illuminated semiconductor does not alter significantly. However, the opposite is true for the number of minority carriers. The number of photo-generated minority carriers outweighs the number of minority carriers existing in the doped solar cell in the dark (because in doping the minority carrier concentration is so small), and therefore the number of minority carriers in an illuminated solar cell can be approximated by the number of light generated carriers.
Photons incident on the surface of a semiconductor will be either reflected from the top surface, will be absorbed in the material or, failing either of the above two processes, will be transmitted through the material. For photovoltaic devices, reflection and transmission are typically considered loss mechanisms as photons which are not absorbed do not generate power. If the photon is absorbed it has the possibility of exciting an electron from the valence band to the conduction band. A key factor in determining if a photon is absorbed or transmitted is the energy of the photon. Therefore, only if the photon has enough energy will the electron be excited into the conduction band from the valence band. Photons falling onto a semiconductor material can be divided into three groups based on their energy compared to that of the semiconductor band gap: