Lens coatings: anti-reflective, hard layer, CleanCoat, etc. - anti-reflection
Tiefenschärfe Rechner App
Abstract : with the same setup used for the Michelson-Morley interferometer we made the Mach-Zehnder configuration. The purpose of this post is the description of the construction of the apparatus and its use for simple interferometry experiments.
SchärfentiefeTabelle Excel
In our apparatus this has been qualitatively demonstrated by inserting a heat source, such as the flame of a candle or the stylus of an electronic soldering iron, inside one of the arms in order to heat the air and introduce a modification factor of the refractive index. In this way the interference fringes move and arrange themselves in a different pattern due to the local changes of the index n.
Beugungsunschärfe Rechner
If you like this site and if you want to contribute to the development of the activities you can make a donation, thank you !
SchärfentiefeAbbildungsmaßstab
In the Mach-Zehnder interferometer, unlike the Michelson-Morley interferometer, each beam follows a different path, and then recombines downstream of the second beam splitter. This is the main difference, however the general theory of interference remains valid: the interference is due to the coherent superposition of the two waves. The “outputs” of the Mach-Zehnder apparatus are two : one parallel to the incoming beam and the other orthogonal. If we examine the parallel output we see that the two beams both arrive after having undergone two reflections, then they both arrive in phase having both accumulated a phase shift of 2π that is a wavelength. For the orthogonal exit instead, a beam arrives after three reflections, while the other after a single reflection, the two beams are therefore out of phase with π and therefore give rise to destructive interference. If a beam, in one of the two paths, undergoes a phase shift equal to ΔΦ, this reflects on the intensity of the resulting beam: the parallel beam will have cos2ΔΦ/2, while the orthogonal beam sen2ΔΦ/2, as shown in the figure below.
If you liked this post you can share it on the “social” Facebook, Twitter or LinkedIn with the buttons below. This way you can help us! Thank you !
Die Schärfentiefe einer Kamera ist der Bereich der Entfernungen, in dem Objekte scharf abgebildet werden. Die Schärfentiefe ist abhängig vom Pixelabstand des Kamerasensors, der effektiven Brennweite des Objektivs und dem Blendendurchmesser des Objektivs. Dieser Schärfentiefe-Rechner hat fünf Hauptausgaben: 1.) Schärfentiefe 2.) Hyperfokale Entfernung3.) Geometrische und diffraktive Schärfentiefe4.) Nyquist-Frequenz des Sensors5.) Relative Transmission von 2 F#s und die erforderliche BelichtungslängendifferenzEine schnellere Blende (niedrigeres F/#) führt zu einer kürzeren Schärfentiefe, während eine langsamere Blende (höheres F/#) zu einer größeren Schärfentiefe führt.Die Schärfentiefe hängt mit der "hyperfokalen Entfernung" zusammen, d. h. der Entfernung, bei der alle Objekte, die sich außerhalb der Entfernung befinden, scharf abgebildet werden, wenn Sie die Kamera fokussieren. Wenn Sie eine Kamera näher als die hyperfokale Entfernung fokussieren, wird die Schärfentiefe geringer. Die Schärfentiefe ist nicht symmetrisch um die gewählte Fokusentfernung; sie reicht weiter über die Fokusentfernung hinaus als vor der Fokusentfernung. Die Schärfentiefe kann durch drei Maßstäbe charakterisiert werden:
For the construction of the interferometer we used the same materials described in the previous post Michelson – Morley Interferometer, it is a pair of mirrors, a pair of plate beam splitters, a He-Ne laser and a beam expander (piece of binoculars), all mounted on our DIY optical bench. The image below shows the complete setup.
Schärfentieferechner für immer dabei
Die auf den Bildsensor auftreffende Lichtmenge wird bei einem höheren Blendenwert reduziert, was eine längere Belichtung oder eine höhere digitale Verstärkung / ISO erfordert. Wir haben einen Blendenrechner hinzugefügt, um die relative Beleuchtungsstärke (Durchsatz) eines Objektivs mit verschiedenen Blendenwerten zu ermitteln. Auf diese Weise können Sie Belichtung und Verstärkung auf der Grundlage des Blendenwerts des Objektivs anpassen.
Abstract: in this article, we continue the presentation of the new KC761B device. In previous posts, we described the device in general terms and its functionality as a gamma spectrometer. In this post, we describe its use as a beta and alpha radiation detector. To detect beta and alpha particles, the device uses a PIN-type semiconductor sensor positioned on the back of the device.
SchärfentiefeTabelle für die Hosentasche
This interferometer cannot be used for the measurement of displacements, as in the Michelson-Morley interferometer, however it can be used profitably for the detection of changes in the refractive index on one of the optical paths, therefore it is suitable to be used as a sensitive detector of substances or physical phenomena where the latter cause a variation of the refractive index. In recent years, Mach-Zehnder interferometers integrated on chip or fiber optic have been designed to build sensitive detectors.
The Mach-Zehnder interferometer is a type of beam division interferometer, consisting of two mirrors and two beam splitters. The light inside the system travels two different paths and recombines downstream of the second beam splitter producing an interference pattern dependent on the phase difference between the two waves. The phase difference (or the equivalent optical path) can be introduced by a small asymmetry in one of the beam splitters or in one of the two mirrors. Since the two paths are separate, this interferometer is much more difficult to align than the Micheloson-Morley interferometer. Its applications are numerous : generally an object is inserted along one of the two paths, for example a glass slide, which produces a difference in the optical path and therefore a movement of the interference fringes. By counting the fringes, the difference in optical path can be calculated and, for example, the refractive index of the interposed medium can be calculated. The following drawing shows the interferometer scheme.