High Power Laser Polarizing Cube Beamsplitters (HPB) - polarizing beamsplitters
Green, R. P. et al. Room-temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 83, 1921–1922 (2003).
Xie, F. et al. High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum-cascade lasers at λ < 5.2 μm. Appl. Phys. Lett. 95, 091110 (2009).
Semmel, J., Kaiser, W., Hofmann, H., Hofling, S. & Forchel, A. Single mode emitting ridge waveguide quantum cascade lasers coupled to an active ring resonator filter. Appl. Phys. Lett. 93, 211106 (2008).
Beck, M. et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301–305 (2002).
Yu Yao and Anthony J. Hoffman: These two authors contributed equally to this work, and significantly more so than the third author
Khurgin, J. B. et al. Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers. Appl. Phys. Lett. 94, 091101 (2009).
Beck, M. et al. Buried heterostructure quantum cascade lasers with a large optical cavity waveguide. IEEE Photon. Tech. Lett. 12, 1450–1452 (2000).
Wysocki, G. et al. Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing. Appl. Phys. B 92, 305–311 (2008).
Darvish, S. R., Slivken, S., Evans, A., Yu, J. S. & Razeghi, M. Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 9.6 μm. Appl. Phys. Lett. 88, 201114 (2006).
Lu, Q. Y., Bai, Y., Bandyopadhyay, N., Slivken, S. & Razeghi, M. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett. 98, 181106 (2011).
Tunablequantum cascadelaser
Mujagić, E. et al. Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers. Appl. Phys. Lett. 96, 031111 (2010).
Gmachl, C. et al. Complex-coupled quantum cascade distributed-feedback laser. IEEE. Photon. Tech. Lett. 9, 1090–1092 (1997).
Menzel, S. et al. Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K. Opt. Express 19, 16229–16235 (2011).
2023220 — But the most popular embedded camera mounts today are S-mount, C-mount, CS-mount, F-mount and T-mount. Each mount differs from each other by its ...
Quantum cascade laserswikipedia
Jul 25, 2024 — Depth of field (DoF) is a crucial concept in photography that refers to the distance between the nearest and farthest objects in a photo that ...
Tredicucci, A. et al. High-performance quantum cascade lasers with electric-field-free undoped superlattice. IEEE Photon. Tech. Lett. 12, 260–262 (2000).
Blaser, S. et al. Low-consumption (<2W) continuous-wave singlemode quantum-cascade lasers grown by metal-organic vapour-phase epitaxy. Electron. Lett. 43, 1201–1202 (2007).
Fujita, K., Edamura, T., Furuta, S. & Yamanishi, M. High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design. Appl. Phys. Lett. 96, 241107 (2010).
Carras, M. et al. Top grating index-coupled distributed feedback quantum cascade lasers. Appl. Phys. Lett. 93, 011109 (2008).
Chaparala, S. C., Xie, F., Caneau, C., Zah, C. E. & Hughes, L. C. Design guidelines for efficient thermal management of mid-infrared quantum cascade lasers. IEEE T. Compon. Pack. T. 1, 1975–1982 (2001).
Weidmann, D. & Wysocki, G. High-resolution broadband (>100 cm−1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser. Opt. Express 17, 248–259 (2009).
It is used in the soldering progress for glass lining as a cosolvent. It finds application as an additive of aluminum electrolysis and rare earth electrolysis ...
The authors acknowledge collaborations with colleagues at Princeton University and associated with the NSF Engineering Research Center MIRTHE. A.J.H. thanks S. Howard for valuable discussions. They also acknowledge partial support by MIRTHE (NSF-ERC) and DTRA.
Xie, F. et al. Continuous wave operation of distributed feedback quantum cascade lasers with low threshold voltage and lower power consumption. Proc. SPIE 8277, 82770S (2012).
Yu, J. S. et al. High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8 μm. Appl. Phys. Lett. 87, 041104 (2005).
Liu, P. Q., Sladek, K., Wang, X. J., Fan, J. Y. & Gmachl, C. F. Single-mode quantum cascade lasers employing a candy-cane shaped monolithic coupled cavity. Appl. Phys. Lett. 99, 241112 (2011).
Katz, S., Vizbaras, A., Boehm, G. & Amann, M. C. High-performance injectorless quantum cascade lasers emitting below 6 μm. Appl. Phys. Lett. 94, 151106 (2009).
Slivken, S., Matlis, A., Rybaltowski, A., Wu, Z. & Razeghi, M. Low-threshold 7.3 μm quantum cascade lasers grown by gas-source molecular beam epitaxy. Appl. Phys. Lett. 74, 2758–2760 (1999).
Quantum cascadelaser PDF
Maulini, R. et al. Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature. Electron. Lett. 45, 107–108 (2009).
Yao, Y., Wang, X. J., Fan, J. Y. & Gmachl, C. F. High performance 'continuum-to-continuum' quantum cascade lasers with a broad gain bandwidth of over 400 cm−1. Appl. Phys. Lett. 97, 081115 (2010).
Sirtori, C. et al. Mid-infrared (8.5 μm) semiconductor lasers operating at room temperature. IEEE Photon. Tech. Lett. 9, 294–296 (1997).
Fujita, K. et al. High-performance quantum cascade lasers with wide electroluminescence (∼600 cm−1), operating in continuous-wave above 100 °C. Appl. Phys. Lett. 98, 231102 (2011).
Maulini, R., Beck, M., Faist, J. & Gini, E. Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers. Appl. Phys. Lett. 84, 1659–1661 (2004).
Yao, Y., Hoffman, A. & Gmachl, C. Mid-infrared quantum cascade lasers. Nature Photon 6, 432–439 (2012). https://doi.org/10.1038/nphoton.2012.143
Yu, J. S., Slivken, S., Evans, A., Doris, L. & Razeghi, M. High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature. Appl. Phys. Lett. 83, 2503–2505 (2003).
Maulini, R., Lyakh, A., Tsekoun, A. & Patel, C. K. N. λ ∼ 7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature. Opt. Express 19, 17203–17211 (2011).
Bai, Y. B., Slivken, S., Kuboya, S., Darvish, S. R. & Razeghi, M. Quantum cascade lasers that emit more light than heat. Nature Photon. 4, 99–102 (2010).
Wakayama, Y., Iwamoto, S. & Arakawa, Y. Switching operation of lasing wavelength in mid-infrared ridge-waveguide quantum cascade lasers coupled with microcylindrical cavity. Appl. Phys. Lett. 96, 171104 (2010).
Slight, T. J. et al. λ ∼ 3.35 μm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating. IEEE Photon. Tech. Lett. 23, 420–422 (2011).
Faist, J. et al. Short wavelength (λ ∼ 3.4 μm) quantum cascade laser based on strained compensated InGaAs/AlInAs. Appl. Phys. Lett. 72, 680–682 (1998).
Faist, J. et al. High power mid-infrared (λ > 5 μm) quantum cascade lasers operating above room temperature. Appl. Phys. Lett. 68, 3680–3682 (1996).
Liu, P. Q., Wang, X. J., Fan, J. Y. & Gmachl, C. F. Single-mode quantum cascade lasers based on a folded Fabry–Pérot cavity. Appl. Phys. Lett. 98, 061110, (2011).
Maulini, R., Mohan, A., Giovannini, M., Faist, J. & Gini, E. External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade. Appl. Phys. Lett. 88, 201113 (2006).
Tredicucci, A. et al. High performance interminiband quantum cascade lasers with graded superlattices. Appl. Phys. Lett. 73, 2101–2103 (1998).
Gresch, T., Giovannini, M., Hoyer, N. & Faist, J. Quantum cascade lasers with large optical waveguides. IEEE Photon. Tech. Lett. 18, 544–546 (2006).
Diehl, L. et al. High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K. Appl. Phys. Lett. 88, 201115 (2006).
Xie, F. et al. High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum-cascade lasers at λ ∼ 5.2 μm. Appl. Phys. Lett. 95, 091110 (2009).
Cathabard, O., Teissier, R., Devenson, J., Moreno, J. C. & Baranov, A. N. Quantum cascade lasers emitting near 2.6 μm. Appl. Phys. Lett. 96, 141110 (2010).
Fujita, K., Edamura, T., Furuta, S. & Yamanishi, M. High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design. Appl. Phys. Lett. 96, 241107, (2010).
Quantum cascadelaser applications
Zhang, J. C. et al. Low-threshold continuous-wave operation of distributed-feedback quantum cascade laser at λ ∼ 4.6 μm. IEEE Photon. Tech. Lett. 23, 1334–1336 (2011).
Revin, D. G. et al. InP-based midinfrared quantum cascade lasers for wavelengths below 4 μm. IEEE J. Sel. Top. Quant. 17, 1417–1425 (2011).
Maulini, R., Yarekha, D. A., Bulliard, J. M., Giovannini, M. & Faist, J. Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser. Opt. Lett. 30, 2584–2586 (2005).
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Gmachl, C., Sivco, D. L., Colombelli, R., Capasso, F. & Cho, A. Y. Ultra-broadband semiconductor laser. Nature 415, 883–887 (2002).
Gokden, B., Bai, Y., Bandyopadhyay, N., Slivken, S. & Razeghi, M. Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ∼ 4.36 μm. Appl. Phys. Lett. 97, 131112 (2010).
Gokden, B., Tsao, S., Haddadi, A., Bandyopadhyay, N. & Slivken, S. Widely tunable, single-mode, high-power quantum cascade lasers. SPIE Proc. Integrated Photonics: Materials, Devices, and Applications 8069, 806905 (2011).
Bai, Y., Darvish, S. R., Bandyopadhyay, N., Slivken, S. & Razeghi, M. Optimizing facet coating of quantum cascade lasers for low power consumption. J. Appl. Phys. 109, 053103 (2011).
Other ... 365 NM is the standard UV light source when people refer to black light. When in doubt use one of our 365 nm black light energy for ...
Quantum cascadelaser working principle
Owschimikow, N. et al. Resonant second-order nonlinear optical processes in quantum cascade lasers. Phys. Rev. Lett. 90, 043902 (2003).
Fujita, K. et al. Broad-gain (Δλ/λ0 ∼ 0.4), temperature-insensitive (T0 ∼ 510K) quantum cascade lasers. Opt. Express 19, 2694–2701 (2011).
Lu, Q. Y., Bai, Y., Bandyopadhyay, N., Slivken, S. & Razeghi, M. Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output. Appl. Phys. Lett. 97, 231119 (2010).
Escarra, M. D. et al. Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy. Appl. Phys. Lett. 94, 251114 (2009).
Carras, M. et al. Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers. Appl. Phys. Lett. 96, 161105 (2010).
Mohan, A. et al. Room-temperature continuous-wave operation of an external-cavity quantum cascade laser. Opt. Lett. 32, 2792–2794 (2007).
Interbandcascadelaser
Quantum Cascadelaser price
Suggestions ... Él no tenía forma ni voz, pero era luminoso y de mente abierta. Tibio y suave. He had no shape or voice, but he was bright and broadminded, warm ...
Faist, J. Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits. Appl. Phys. Lett. 90, 253512 (2007).
Fuchs, P. et al. Widely tunable quantum cascade lasers with coupled cavities for gas detection. Appl. Phys. Lett. 97, 181111 (2010).
Shin, J. C. et al. Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers. Appl. Phys. Lett. 94, 201103 (2009).
Finger, N., Schrenk, W. & Gornik, E. Analysis of TM-polarized DFB laser structures with metal surface gratings. IEEE J. Quant. Electron. 36, 780–786 (2000).
Mar 24, 2021 — Armed with great hardness and a low coefficient of friction, DLC surpasses many conventional ceramic coatings (TiN , CrN, ZrN, and AlTiN) in ...
Dougakiuchi, T. et al. Broadband tuning of external cavity dual-upper-state quantum-cascade lasers in continuous wave operation. Appl. Phys. Express 4, 102101 (2011).
Bai, Y., Slivken, S., Darvish, S. R. & Razeghi, M. Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency. Appl. Phys. Lett. 93, 021103 (2008).
Blaser, S. et al. Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ ≈ 5.4 μm. Appl. Phys. Lett. 86, 041109 (2005).
Evans, A. et al. High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers. Appl. Phys. Lett. 84, 314–316 (2004).
Hoffman, A. J. et al. Low voltage-defect quantum cascade laser with heterogeneous injector regions. Opt. Express 15, 15818–15823 (2007).
Bai, Y. et al. Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power. Appl. Phys. Lett. 92, 101105 (2008).
Carras, M. & De Rossi, A. Photonic modes of metallodielectric periodic waveguides in the midinfrared spectral range. Phys. Rev. B 74, 235120 (2006).
Golka, S., Pflugl, C., Schrenk, W. & Strasser, G. Quantum cascade lasers with lateral double-sided distributed feedback grating. Appl. Phys. Lett. 86, 111103 (2005).
Yao, Y., Tsai, T., Wang, X. J., Wysocki, G. & Gmachl, C. F. Broadband quantum cascade lasers based on strongly-coupled transitions with an external cavity tuning range over 340 cm−1. 2011 Conf. on Lasers and Electro-Optics (2011).
Faist, J., Beck, M., Aellen, T. & Gini, E. Quantum-cascade lasers based on a bound-to-continuum transition. Appl. Phys. Lett. 78, 147–149 (2001).
Bismuto, A., Beck, M. & Faist, J. High power Sb-free quantum cascade laser emitting at 3.3 μm above 350 K. Appl. Phys. Lett. 98, 191104 (2011).
Howard, S. S., Liu, Z. J. & Gmachl, C. F. Thermal and stark-effect roll-over of quantum-cascade lasers. IEEE J. Quant. Electron. 44, 319–323 (2008).
Vurgaftman, I. & Meyer, J. R. Photonic-crystal distributed-feedback quantum cascade lasers. IEEE J. Quant. Electron. 38, 592–602 (2002).
Lee, B. G. et al. Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy. Appl. Phys. Lett. 91, 231101 (2007).
Lu, Q. Y., Bai, Y., Bandyopadhyay, N., Slivken, S. & Razeghi, M. 2. 4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett. 98, 181106 (2011).
The design flexibility of quantum cascade lasers has enabled their expansion into mid-infrared wavelengths of 3–25 μm. This Review focuses on the two major areas of recent improvement: power and power efficiency, and spectral performance.
Lee, B. G. et al. Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm. IEEE Photon. Tech. Lett. 21, 914–916 (2009).
Mujagić, E. et al. Two-dimensional broadband distributed-feedback quantum cascade laser arrays. Appl. Phys. Lett. 98, 141101 (2011).
Yao, Y. et al. Broadband quantum cascade laser gain medium based on a 'continuum-to-bound' active region design. Appl. Phys. Lett. 96, 211106 (2010).
Evans, A. et al. Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency. Appl. Phys. Lett. 91, 071101 (2007).
Wittmann, A. et al. Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies. Appl. Phys. Lett. 89, 141116 (2006).
Phillips, M. C., Myers, T. L., Wojcik, M. D. & Cannon, B. D. External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features. Opt. Lett. 32, 1177–1179 (2007).
Weidmann, D., Tsai, T., Macleod, N. A. & Wysocki, G. Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry. Opt. Lett. 36, 1951–1953 (2011).
Hoffman, A. J. et al. Lasing-induced reduction in core heating in high wall plug efficiency quantum cascade lasers. Appl. Phys. Lett. 94, 041101 (2009).
by PA Blanche · 2004 · Cited by 95 — Subject terms: dichromated gelatin; spectrograph; grating; holography; heads-up display. Paper 0431124 received Dec. 9, 2003; revised manuscript received May 21 ...
Quantum cascadelaser spectroscopy
Kennedy, K. et al. High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings. Appl. Phys. Lett. 89, 201117 (2006).
Page, H. et al. High peak power (1.1W) (Al)GaAs quantum cascade laser emitting at 9.7 μm. Electron. Lett. 35, 1848–1849 (1999).
Ulrich, J., Kreuter, J., Schrenk, W., Strasser, G. & Unterrainer, K. Long wavelength (15 and 23 μm) GaAs/AlGaAs quantum cascade lasers. Appl. Phys. Lett. 80, 3691–3693 (2002).
Faist, J. et al. Continuous-wave operation of a vertical transition quantum cascade laser above T=80 K. Appl. Phys. Lett. 67, 3057–3059 (1995).
Mid-infrared quantum cascade lasers are semiconductor injection lasers whose active core implements a multiple-quantum-well structure. Relying on a designed staircase of intersubband transitions allows free choice of emission wavelength and, in contrast with diode lasers, a low transparency point that is similar to a classical, atomic four-level laser system. In recent years, this design flexibility has expanded the achievable wavelength range of quantum cascade lasers to ∼3–25 μm and the terahertz regime, and provided exemplary improvements in overall performance. Quantum cascade lasers are rapidly becoming practical mid-infrared sources for a variety of applications such as trace-chemical sensing, health monitoring and infrared countermeasures. In this Review we focus on the two major areas of recent improvement: power and power efficiency, and spectral performance.
Wysocki, G. et al. Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications. Appl. Phys. B 81, 769–777 (2005).
Howard, S. S. et al. High-performance quantum cascade lasers: Optimized design through waveguide and thermal modeling. IEEE J. Sel. Top. Quant. 13, 1054–1064 (2007).
Hancock, G., van Helden, J. H., Peverall, R., Ritchie, G. A. D. & Walker, R. J. Direct and wavelength modulation spectroscopy using a CW external cavity quantum cascade laser. Appl. Phys. Lett. 94, 201110 (2009).
Bai, Y., Bandyopadhyay, N., Tsao, S., Slivken, S. & Razeghi, M. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl. Phys. Lett. 98, 181102 (2011).
Lyakh, A. et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach. Appl. Phys. Lett. 95, 141113 (2009).
Yu, J. S., Slivken, S., Darvish, S. R. & Razeghi, M. Short wavelength (λ ∼ 4.3 μm) high-performance continuous-wave quantum-cascade lasers. IEEE Photon. Tech. Lett. 17, 1154–1156 (2005).
Polarized car window tint is a special kind of film that has an extra layer of protection against UV rays. The polarization technology significantly reduces ...
Wittmann, A. et al. Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K. IEEE Photon. Tech. Lett. 21, 814–816 (2009).
Sirtori, C. et al. Quantum cascade laser with plasmon-enhanced wave-guide operating at 8.4 μm wavelength. Appl. Phys. Lett. 66, 3242–3244 (1995).
Have fun with this Fiber Optic three option: white, blue or green color that saves energy automatic (off at dawn on at dusk) has a cool operation and last ...
Mukherjee, N. & Patel, C. K. N. Molecular fine structure and transition dipole moment of NO2 using an external cavity quantum cascade laser. Chem. Phys. Lett. 462, 10–13 (2008).
Gmachl, C. et al. High temperature (T ≥ 425K) pulsed operation of quantum cascade lasers. Electron. Lett. 36, 723–725 (2000).
Lyakh, A. et al. 1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm. Appl. Phys. Lett. 92, 111110 (2008).
Colombelli, R. et al. Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths. Appl. Phys. Lett. 78, 2620–2622 (2001).
A laser shaft alignment tool performs measurements by means of two sensors mounted on two connected shafts. Both sensors fire a laser beam and receive the other ...
Luo, G. P. et al. Grating-tuned external-cavity quantum-cascade semiconductor lasers. Appl. Phys. Lett. 78, 2834–2836 (2001).
Xie, F. et al. Room temperature CW operation of short wavelength quantum cascade lasers made of strain balanced GaxIn1− xAs/AlyIn1− yAs material on InP substrates. IEEE J. Sel. Top. Quant. 17, 1445–1452 (2011).