Edmund de Waal - edmund
It’s important to understand this concept and how it affects exposure because it works in tandem with the shutter speed (we’ll discuss this in another section) to establish a given exposure value.
The aperture range identifies the widest to smallest range of lens openings, i.e., f/1.4 (on a super-fast lens) to f/32, with incremental “stops” in between (f/2, f/2.8, f/4, f/5.6, f/8, f/11, f/16, and f/22).
Structure andfunction of eyepiece in microscope
Thanks a lot for this wonderful note: It is really helpful, Really appreciate the way all the detail about microscope have been explained
Why does changing the focal length negate the effects on DOF? This is because the visual properties of a given lens either provide either greater DOF (shorter lenses) or shallower DOF (longer lenses). The physical properties of a lens at a given focal length also affect the depth of field. A shorter focal length lens (say 27mm) focused at 5 meters, set at f/4 has a deeper DOF (perhaps from 3 meters in front and 20 meters behind) than a longer focal length (say 300mm), also set at f/4 focused at 5 meters. The 300mm lens has a remarkably shallow depth of field.
The light is then focused on the eyepiece lens. This lens further magnifies the pre-magnified image coming from the objectives.
Ans. Rack stop is included in the microscope for preventing the specimen slide from coming too far up and hitting the objective lens.
To achieve a deep, rich and expansive DOF, you’ll want to set the f-stop to around f/11 or higher. You may have seen this principle demonstrated when you look at photos taken outside during the brightest time of the day. In such a case, the camera is typically set at f/16 or higher (that Sunny 16 Rule) and the Depth of Field is quite deep – perhaps several yards in front of and nearly to infinity beyond the exact focus point.
The f-stops work as inverse values, such that a small f/number (say f/2.8) corresponds to a larger or wider aperture size, which results in a shallow depth of field; conversely a large f/number (say f/16) results in a smaller or narrower aperture size and therefore a deeper depth of field.
Thanks very much dear and please continue doing so, am Gerald M from Uganda East Africa doing diploma in nursing at Mulago school of nursing and midwifery
Thank you so much for the note that you have given to me i was so grateful to know that you are so bright people that extend your help to a student
Ans. The coarse adjustment knob moves the stage up and down to bring the specimen into focus. The fine adjustment knob brings the specimen into sharp focus under low power and is used for all focusing when using high-power lenses.
Manipulation of depth of field is a good way to modify the characteristics of your photo, and manipulating the aperture is the ideal way to do this because it has little or no effect on composition.
1. which objective lens focuses closest to object 2. what controls the light entering the binocular lenses 3. how can you enhance the resolving power of a microscope 4. what is useful and false magnification PLEASE CAN YOU HELP ME IN ASWERING THOSE QUESTIONS
Ans. Condensers are lenses that are used to collect and focus light from the illuminator into the specimen. They are found under the stage next to the diaphragm of the microscope. They play a major role in ensuring clear sharp images are produced with a high magnification of 400X and above. Abbe condenser is a condenser specially designed for high-quality microscopes, which makes the condenser to be movable and allows very high magnification of above 400X. High-quality microscopes normally have a high numerical aperture than objective lenses.
Microscopeparts and functions
Seriously, if i am not grateful, i am lying. This note is really helpeful to me to differet ways to different methology.
this is a really good artical i used it to study my science i just wanted to point out to you that tere are a few spelling errors but other than that it is a 100% rating from me
The size of the aperture’s opening is measured in f-stops – one of two sets of numbers on the lens barrel (the other being the focusing distance).
Function ofbody tubein microscope
Microscopes are generally made up of structural parts for holding and supporting the microscope and its components and the optical parts that are used for magnification and viewing of the specimen images. Modern microscopes have additional electronics and display devices. This description defines the parts of a microscope and the functions they perform to enable the visualization of specimens.
Their ability to function is because they have been constructed with special components that enable them to achieve high magnification levels. They can view very small specimens and distinguish their structural differences, for example, the view of animal and plant cells viewing microscopic bacterial cells.
I did NOT like this website sourse. Wanna know why I didn’t like it??? I don’t like it BECAUSE my school wants me to use this website sourse. My new science teacher wants us to answer those 10 questions. I think its pretty dumb. No Offensen to anyne out there, because I am a nice person not a mean one.
Function ofarmin microscope
Ans. A microscope is an optical instrument with one or more lens systems that are used to get a clear, magnified image of minute objects or structures that can’t be viewed by the naked eye.
In this section we’re going to discuss several crucial elements for exercising greater creative control over your final photographic image.Other than lighting, composition and focus (which includes depth of field) are the main elements that you can exercise complete command over.Focus enables you to isolate a subject and specifically draw the viewer’s eye to exactly where you want it.The first thing to understand about focus is depth of field.1Depth of FieldThe depth of field (DOF) is the front-to-back zone of a photograph in which the image is razor sharp.As soon as an object (person, thing) falls out of this range, it begins to lose focus at an accelerating degree the farther out of the zone it falls; e.g., closer to the lens or deeper into the background. With any DOF zone, there is a Point of Optimum focus in which the object is most sharp.There are two ways to describe the qualities of depth of field – shallow DOF or deep DOF. Shallow is when the included focus range is very narrow, a few inches to several feet. Deep is when the included range is a couple of yards to infinity. In both cases DOF is measured in front of the focus point and behind the focus point.DOF is determined by three factors – aperture size, distance from the lens, and the focal length of the lens.Let’s look at how each one works.2ApertureThe aperture is the opening at the rear of the lens that determines how much light travels through the lens and falls on the image sensor.The size of the aperture’s opening is measured in f-stops – one of two sets of numbers on the lens barrel (the other being the focusing distance).The f-stops work as inverse values, such that a small f/number (say f/2.8) corresponds to a larger or wider aperture size, which results in a shallow depth of field; conversely a large f/number (say f/16) results in a smaller or narrower aperture size and therefore a deeper depth of field.3Small vs Large ApertureManipulating the aperture is the easiest and most often utilized means to adjust Depth of Field.To achieve a deep, rich and expansive DOF, you’ll want to set the f-stop to around f/11 or higher. You may have seen this principle demonstrated when you look at photos taken outside during the brightest time of the day. In such a case, the camera is typically set at f/16 or higher (that Sunny 16 Rule) and the Depth of Field is quite deep – perhaps several yards in front of and nearly to infinity beyond the exact focus point.Let’s take a look at these two photos as examples. The left side of the photo has an expansive DOF, most likely shot around noon (notice the short, but strong shadows), with an f/22 aperture. The right side of the photo has an extremely shallow DOF; probably an f/2.8 aperture setting.However, to achieve an identical proper exposure, the shutter speed is probably closer to 1/1000th to compensate for the increased amount of light entering the lens at f/2.8.4Aperture RangeThe aperture range identifies the widest to smallest range of lens openings, i.e., f/1.4 (on a super-fast lens) to f/32, with incremental “stops” in between (f/2, f/2.8, f/4, f/5.6, f/8, f/11, f/16, and f/22).Each f-number is represents one “stop” of light, a stop is a mathematical equation (which is the focal length of the lens divided by the diameter of the aperture opening) that determines how much light that enters the lens regardless of the length of the lens. Such that an f/4 on a 50mm has smaller opening than an f/4 on a 200mm, but an equivalent amount of light travels through both lenses to reach the image sensor thus providing the same exposure.Each movement up the range (say f/2 to f.2.8) reduces the amount of light by one-half, and each movement down the range (say f/11 to f/8) doubles the amount of light passing through the lens.It’s important to understand this concept and how it affects exposure because it works in tandem with the shutter speed (we’ll discuss this in another section) to establish a given exposure value.Basically, when you change the aperture size one stop, you have to shift the shutter speed one stop in the opposite direction to maintain a consistent exposure… and this change in aperture alters the depth of field (DOF) accordingly.5Distance from the LensThe last element affecting depth of field is the distance of the subject from the lens – you can adjust the DOF by changing that distance.For example, the closer an object is to the lens (and the focus is set on that object) the shallower the DOF. Conversely, the reverse is true – the farther away an object is and focused on, the deeper the DOF. Changing the distance to subject is the least practical way to manipulate the depth of field, and by changing the distance from a subject to the lens, you immediately change your image’s composition. To maintain the compositional integrity of the shot, but still have the change in DOF from a distance, you can change the focal length (either by changing lenses or zooming in).Why does changing the focal length negate the effects on DOF? This is because the visual properties of a given lens either provide either greater DOF (shorter lenses) or shallower DOF (longer lenses). The physical properties of a lens at a given focal length also affect the depth of field. A shorter focal length lens (say 27mm) focused at 5 meters, set at f/4 has a deeper DOF (perhaps from 3 meters in front and 20 meters behind) than a longer focal length (say 300mm), also set at f/4 focused at 5 meters. The 300mm lens has a remarkably shallow depth of field.Incidentally, to help you with this, every lens has a manual with a DOF chart for each f/stop and the major focusing distances. DOF is just a matter of physics, and it’s important to grasp this concept.CConclusionManipulation of depth of field is a good way to modify the characteristics of your photo, and manipulating the aperture is the ideal way to do this because it has little or no effect on composition.You simply need to change the shutter speed (or change the light sensitivity – ISO) to compensate for the changes in the exposure from the adjustments to the f-number. Changes in distance and focal length also affect DOF, but these changes have trade-offs in terms of composition.Therefore, changes to aperture are the best way to manipulate DOF without affecting a photo’s composition.
Focus enables you to isolate a subject and specifically draw the viewer’s eye to exactly where you want it.The first thing to understand about focus is depth of field.1Depth of FieldThe depth of field (DOF) is the front-to-back zone of a photograph in which the image is razor sharp.As soon as an object (person, thing) falls out of this range, it begins to lose focus at an accelerating degree the farther out of the zone it falls; e.g., closer to the lens or deeper into the background. With any DOF zone, there is a Point of Optimum focus in which the object is most sharp.There are two ways to describe the qualities of depth of field – shallow DOF or deep DOF. Shallow is when the included focus range is very narrow, a few inches to several feet. Deep is when the included range is a couple of yards to infinity. In both cases DOF is measured in front of the focus point and behind the focus point.DOF is determined by three factors – aperture size, distance from the lens, and the focal length of the lens.Let’s look at how each one works.2ApertureThe aperture is the opening at the rear of the lens that determines how much light travels through the lens and falls on the image sensor.The size of the aperture’s opening is measured in f-stops – one of two sets of numbers on the lens barrel (the other being the focusing distance).The f-stops work as inverse values, such that a small f/number (say f/2.8) corresponds to a larger or wider aperture size, which results in a shallow depth of field; conversely a large f/number (say f/16) results in a smaller or narrower aperture size and therefore a deeper depth of field.3Small vs Large ApertureManipulating the aperture is the easiest and most often utilized means to adjust Depth of Field.To achieve a deep, rich and expansive DOF, you’ll want to set the f-stop to around f/11 or higher. You may have seen this principle demonstrated when you look at photos taken outside during the brightest time of the day. In such a case, the camera is typically set at f/16 or higher (that Sunny 16 Rule) and the Depth of Field is quite deep – perhaps several yards in front of and nearly to infinity beyond the exact focus point.Let’s take a look at these two photos as examples. The left side of the photo has an expansive DOF, most likely shot around noon (notice the short, but strong shadows), with an f/22 aperture. The right side of the photo has an extremely shallow DOF; probably an f/2.8 aperture setting.However, to achieve an identical proper exposure, the shutter speed is probably closer to 1/1000th to compensate for the increased amount of light entering the lens at f/2.8.4Aperture RangeThe aperture range identifies the widest to smallest range of lens openings, i.e., f/1.4 (on a super-fast lens) to f/32, with incremental “stops” in between (f/2, f/2.8, f/4, f/5.6, f/8, f/11, f/16, and f/22).Each f-number is represents one “stop” of light, a stop is a mathematical equation (which is the focal length of the lens divided by the diameter of the aperture opening) that determines how much light that enters the lens regardless of the length of the lens. Such that an f/4 on a 50mm has smaller opening than an f/4 on a 200mm, but an equivalent amount of light travels through both lenses to reach the image sensor thus providing the same exposure.Each movement up the range (say f/2 to f.2.8) reduces the amount of light by one-half, and each movement down the range (say f/11 to f/8) doubles the amount of light passing through the lens.It’s important to understand this concept and how it affects exposure because it works in tandem with the shutter speed (we’ll discuss this in another section) to establish a given exposure value.Basically, when you change the aperture size one stop, you have to shift the shutter speed one stop in the opposite direction to maintain a consistent exposure… and this change in aperture alters the depth of field (DOF) accordingly.5Distance from the LensThe last element affecting depth of field is the distance of the subject from the lens – you can adjust the DOF by changing that distance.For example, the closer an object is to the lens (and the focus is set on that object) the shallower the DOF. Conversely, the reverse is true – the farther away an object is and focused on, the deeper the DOF. Changing the distance to subject is the least practical way to manipulate the depth of field, and by changing the distance from a subject to the lens, you immediately change your image’s composition. To maintain the compositional integrity of the shot, but still have the change in DOF from a distance, you can change the focal length (either by changing lenses or zooming in).Why does changing the focal length negate the effects on DOF? This is because the visual properties of a given lens either provide either greater DOF (shorter lenses) or shallower DOF (longer lenses). The physical properties of a lens at a given focal length also affect the depth of field. A shorter focal length lens (say 27mm) focused at 5 meters, set at f/4 has a deeper DOF (perhaps from 3 meters in front and 20 meters behind) than a longer focal length (say 300mm), also set at f/4 focused at 5 meters. The 300mm lens has a remarkably shallow depth of field.Incidentally, to help you with this, every lens has a manual with a DOF chart for each f/stop and the major focusing distances. DOF is just a matter of physics, and it’s important to grasp this concept.CConclusionManipulation of depth of field is a good way to modify the characteristics of your photo, and manipulating the aperture is the ideal way to do this because it has little or no effect on composition.You simply need to change the shutter speed (or change the light sensitivity – ISO) to compensate for the changes in the exposure from the adjustments to the f-number. Changes in distance and focal length also affect DOF, but these changes have trade-offs in terms of composition.Therefore, changes to aperture are the best way to manipulate DOF without affecting a photo’s composition.
Microscopes are made up of lenses for magnification, each with its own magnification powers. Depending on the type of lens, it will magnify the specimen according to its focal strength.
There are different types of microscopes like light microscope, dark-field microscope, phase contrast microscope, electron microscope, fluorescent microscope, etc.
There are two ways to describe the qualities of depth of field – shallow DOF or deep DOF. Shallow is when the included focus range is very narrow, a few inches to several feet. Deep is when the included range is a couple of yards to infinity. In both cases DOF is measured in front of the focus point and behind the focus point.
Microscopes are instruments that are used in science laboratories to visualize very minute objects, such as cells and microorganisms, giving a contrasting image that is magnified.
As soon as an object (person, thing) falls out of this range, it begins to lose focus at an accelerating degree the farther out of the zone it falls; e.g., closer to the lens or deeper into the background. With any DOF zone, there is a Point of Optimum focus in which the object is most sharp.
Incidentally, to help you with this, every lens has a manual with a DOF chart for each f/stop and the major focusing distances. DOF is just a matter of physics, and it’s important to grasp this concept.
Thanks alot of your help and knowI can draw it well in my exams and write the functions.Thankyou very much for your help
Function ofbasein microscope
Each movement up the range (say f/2 to f.2.8) reduces the amount of light by one-half, and each movement down the range (say f/11 to f/8) doubles the amount of light passing through the lens.
Each f-number is represents one “stop” of light, a stop is a mathematical equation (which is the focal length of the lens divided by the diameter of the aperture opening) that determines how much light that enters the lens regardless of the length of the lens. Such that an f/4 on a 50mm has smaller opening than an f/4 on a 200mm, but an equivalent amount of light travels through both lenses to reach the image sensor thus providing the same exposure.
Thank you very much it really helped me with my science home work since i in 8th grade and this my home work to draw a microscope label all the parts and the function thank may the holy father of holy spirits bless you and give more wisdom thanks love you all keep up the good work and thank you again bye.
Thanks for helping me to know the parts and functions of a light microscope. THANKS AGAIN AND I HOPE THAT I WILL DRAW IT IN MY EXAM
1. Ocular Lens (Eye Piece)2. Diopter Adjustment3. Head4. Nose Piece5. Objective Lens6. Arm (Carrying Handle)7. Mechanical Stage8. Stage Clip9. Aperture10. Diaphragm11. Condenser12. Coarse Adjustment13. Fine Adjustment14. Illuminator (Light Source)15. Stage Controls16. Base17. Brightness Adjustment18. Light Switch
Having been constructed in the 16th Century, microscopes have revolutionized science with their ability to magnify small objects such as microbial cells, producing images with definitive structures that are identifiable and characterizable.
Let’s take a look at these two photos as examples. The left side of the photo has an expansive DOF, most likely shot around noon (notice the short, but strong shadows), with an f/22 aperture. The right side of the photo has an extremely shallow DOF; probably an f/2.8 aperture setting.
Other than lighting, composition and focus (which includes depth of field) are the main elements that you can exercise complete command over.Focus enables you to isolate a subject and specifically draw the viewer’s eye to exactly where you want it.The first thing to understand about focus is depth of field.1Depth of FieldThe depth of field (DOF) is the front-to-back zone of a photograph in which the image is razor sharp.As soon as an object (person, thing) falls out of this range, it begins to lose focus at an accelerating degree the farther out of the zone it falls; e.g., closer to the lens or deeper into the background. With any DOF zone, there is a Point of Optimum focus in which the object is most sharp.There are two ways to describe the qualities of depth of field – shallow DOF or deep DOF. Shallow is when the included focus range is very narrow, a few inches to several feet. Deep is when the included range is a couple of yards to infinity. In both cases DOF is measured in front of the focus point and behind the focus point.DOF is determined by three factors – aperture size, distance from the lens, and the focal length of the lens.Let’s look at how each one works.2ApertureThe aperture is the opening at the rear of the lens that determines how much light travels through the lens and falls on the image sensor.The size of the aperture’s opening is measured in f-stops – one of two sets of numbers on the lens barrel (the other being the focusing distance).The f-stops work as inverse values, such that a small f/number (say f/2.8) corresponds to a larger or wider aperture size, which results in a shallow depth of field; conversely a large f/number (say f/16) results in a smaller or narrower aperture size and therefore a deeper depth of field.3Small vs Large ApertureManipulating the aperture is the easiest and most often utilized means to adjust Depth of Field.To achieve a deep, rich and expansive DOF, you’ll want to set the f-stop to around f/11 or higher. You may have seen this principle demonstrated when you look at photos taken outside during the brightest time of the day. In such a case, the camera is typically set at f/16 or higher (that Sunny 16 Rule) and the Depth of Field is quite deep – perhaps several yards in front of and nearly to infinity beyond the exact focus point.Let’s take a look at these two photos as examples. The left side of the photo has an expansive DOF, most likely shot around noon (notice the short, but strong shadows), with an f/22 aperture. The right side of the photo has an extremely shallow DOF; probably an f/2.8 aperture setting.However, to achieve an identical proper exposure, the shutter speed is probably closer to 1/1000th to compensate for the increased amount of light entering the lens at f/2.8.4Aperture RangeThe aperture range identifies the widest to smallest range of lens openings, i.e., f/1.4 (on a super-fast lens) to f/32, with incremental “stops” in between (f/2, f/2.8, f/4, f/5.6, f/8, f/11, f/16, and f/22).Each f-number is represents one “stop” of light, a stop is a mathematical equation (which is the focal length of the lens divided by the diameter of the aperture opening) that determines how much light that enters the lens regardless of the length of the lens. Such that an f/4 on a 50mm has smaller opening than an f/4 on a 200mm, but an equivalent amount of light travels through both lenses to reach the image sensor thus providing the same exposure.Each movement up the range (say f/2 to f.2.8) reduces the amount of light by one-half, and each movement down the range (say f/11 to f/8) doubles the amount of light passing through the lens.It’s important to understand this concept and how it affects exposure because it works in tandem with the shutter speed (we’ll discuss this in another section) to establish a given exposure value.Basically, when you change the aperture size one stop, you have to shift the shutter speed one stop in the opposite direction to maintain a consistent exposure… and this change in aperture alters the depth of field (DOF) accordingly.5Distance from the LensThe last element affecting depth of field is the distance of the subject from the lens – you can adjust the DOF by changing that distance.For example, the closer an object is to the lens (and the focus is set on that object) the shallower the DOF. Conversely, the reverse is true – the farther away an object is and focused on, the deeper the DOF. Changing the distance to subject is the least practical way to manipulate the depth of field, and by changing the distance from a subject to the lens, you immediately change your image’s composition. To maintain the compositional integrity of the shot, but still have the change in DOF from a distance, you can change the focal length (either by changing lenses or zooming in).Why does changing the focal length negate the effects on DOF? This is because the visual properties of a given lens either provide either greater DOF (shorter lenses) or shallower DOF (longer lenses). The physical properties of a lens at a given focal length also affect the depth of field. A shorter focal length lens (say 27mm) focused at 5 meters, set at f/4 has a deeper DOF (perhaps from 3 meters in front and 20 meters behind) than a longer focal length (say 300mm), also set at f/4 focused at 5 meters. The 300mm lens has a remarkably shallow depth of field.Incidentally, to help you with this, every lens has a manual with a DOF chart for each f/stop and the major focusing distances. DOF is just a matter of physics, and it’s important to grasp this concept.CConclusionManipulation of depth of field is a good way to modify the characteristics of your photo, and manipulating the aperture is the ideal way to do this because it has little or no effect on composition.You simply need to change the shutter speed (or change the light sensitivity – ISO) to compensate for the changes in the exposure from the adjustments to the f-number. Changes in distance and focal length also affect DOF, but these changes have trade-offs in terms of composition.Therefore, changes to aperture are the best way to manipulate DOF without affecting a photo’s composition.
You simply need to change the shutter speed (or change the light sensitivity – ISO) to compensate for the changes in the exposure from the adjustments to the f-number. Changes in distance and focal length also affect DOF, but these changes have trade-offs in terms of composition.
For example, the closer an object is to the lens (and the focus is set on that object) the shallower the DOF. Conversely, the reverse is true – the farther away an object is and focused on, the deeper the DOF. Changing the distance to subject is the least practical way to manipulate the depth of field, and by changing the distance from a subject to the lens, you immediately change your image’s composition. To maintain the compositional integrity of the shot, but still have the change in DOF from a distance, you can change the focal length (either by changing lenses or zooming in).
The optical parts of the microscope are used to view, magnify, and produce an image from a specimen placed on a slide. These parts include:
Function ofstagein microscope
1. Illuminator (Light Source)2. Diaphragm (Iris)3. Condenser4. Condenser Focus Knob5. Rack Stop6. Stage7. Stage Control Knobs8. Nose Piece9. Objective Lens10. Tube (Head)11. Eyepiece (Ocular Lens)12. Diopter Adjustment13. Adjustment Knobs (Fine Adjustment Knob and Coarse Adjustment Knob)14. Arm15. Base16. Light Switch17. Brightness Adjustment
Thanks much for this. We just did microscopy as a topic and the write-up has really helped me to understand better. Thanks again
Ans. The magnification of a lens is defined as the ratio of the height of an image to the height of an object. Microscope magnification measures the total enlargement of the image of an object. Magnification power is the product of eyepiece lens power and objective lens power.
it very good website i use in 4 grade right after i plai amog us and they vote me out using orang strat witch mad me sad 🙁
However, to achieve an identical proper exposure, the shutter speed is probably closer to 1/1000th to compensate for the increased amount of light entering the lens at f/2.8.
What iseyepiece in microscope
The aperture is the opening at the rear of the lens that determines how much light travels through the lens and falls on the image sensor.
© 2007 - 2024 ExposureGuide.com We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites.
Function ofnosepiecein microscope
A beam of light is passed through the condenser to the specimen. The light transmitted from the specimen enters the objective lens. While passing through the objectives, the transmitted rays are spread so that they appear to come from the bigger objects.
Ans. The eyepiece, also known as the ocular is the part used to look through the microscope. Its found at the top of the microscope. Its standard magnification is 10x with an optional eyepiece having magnifications from 5X – 30X. Objective Lens are the major lenses used for specimen visualization. They have a magnification power of 40x-100x. There are about 1- 4 objective lenses placed on one microscope, in that some are rare facing and others face forward.
Thank you for the support u have done may the Holy Spirit from the Almighty shine upon you to have more knowledge 2 continue making more notes from various topics in microbiology????✍️
Basically, when you change the aperture size one stop, you have to shift the shutter speed one stop in the opposite direction to maintain a consistent exposure… and this change in aperture alters the depth of field (DOF) accordingly.
The last element affecting depth of field is the distance of the subject from the lens – you can adjust the DOF by changing that distance.