CVS Pharmacy at 1700 South Industrial Highway Ann ... - cvs pharmacy south industrial
Phillips, M. C., Myers, T. L., Wojcik, M. D. & Cannon, B. D. External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features. Opt. Lett. 32, 1177–1179 (2007).
Fujita, K. et al. High-performance quantum cascade lasers with wide electroluminescence (∼600 cm−1), operating in continuous-wave above 100 °C. Appl. Phys. Lett. 98, 231102 (2011).
Yu, J. S., Slivken, S., Darvish, S. R. & Razeghi, M. Short wavelength (λ ∼ 4.3 μm) high-performance continuous-wave quantum-cascade lasers. IEEE Photon. Tech. Lett. 17, 1154–1156 (2005).
Maulini, R. et al. Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature. Electron. Lett. 45, 107–108 (2009).
Evans, A. et al. High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers. Appl. Phys. Lett. 84, 314–316 (2004).
Menzel, S. et al. Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K. Opt. Express 19, 16229–16235 (2011).
Yao, Y., Tsai, T., Wang, X. J., Wysocki, G. & Gmachl, C. F. Broadband quantum cascade lasers based on strongly-coupled transitions with an external cavity tuning range over 340 cm−1. 2011 Conf. on Lasers and Electro-Optics (2011).
Tredicucci, A. et al. High-performance quantum cascade lasers with electric-field-free undoped superlattice. IEEE Photon. Tech. Lett. 12, 260–262 (2000).
Science 264 553 1994
Carras, M. et al. Top grating index-coupled distributed feedback quantum cascade lasers. Appl. Phys. Lett. 93, 011109 (2008).
Khurgin, J. B. et al. Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers. Appl. Phys. Lett. 94, 091101 (2009).
Lasers have transformed numerous industries with their unique capabilities and precise control of light. However, different types of lasers offer distinct advantages and disadvantages, making them suitable for specific applications. In this article, we will explore the advantages, disadvantages, and applications of various laser types, enabling a better understanding of their strengths and limitations.
Xie, F. et al. Room temperature CW operation of short wavelength quantum cascade lasers made of strain balanced GaxIn1− xAs/AlyIn1− yAs material on InP substrates. IEEE J. Sel. Top. Quant. 17, 1445–1452 (2011).
The authors acknowledge collaborations with colleagues at Princeton University and associated with the NSF Engineering Research Center MIRTHE. A.J.H. thanks S. Howard for valuable discussions. They also acknowledge partial support by MIRTHE (NSF-ERC) and DTRA.
Lyakh, A. et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach. Appl. Phys. Lett. 95, 141113 (2009).
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Owschimikow, N. et al. Resonant second-order nonlinear optical processes in quantum cascade lasers. Phys. Rev. Lett. 90, 043902 (2003).
Mohan, A. et al. Room-temperature continuous-wave operation of an external-cavity quantum cascade laser. Opt. Lett. 32, 2792–2794 (2007).
Katz, S., Vizbaras, A., Boehm, G. & Amann, M. C. High-performance injectorless quantum cascade lasers emitting below 6 μm. Appl. Phys. Lett. 94, 151106 (2009).
Darvish, S. R., Slivken, S., Evans, A., Yu, J. S. & Razeghi, M. Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 9.6 μm. Appl. Phys. Lett. 88, 201114 (2006).
Gmachl, C. et al. Complex-coupled quantum cascade distributed-feedback laser. IEEE. Photon. Tech. Lett. 9, 1090–1092 (1997).
Limited Wavelength Versatility: Solid-state lasers have limitations in terms of available wavelengths compared to other laser types, which can restrict their applicability in certain applications.
Lu, Q. Y., Bai, Y., Bandyopadhyay, N., Slivken, S. & Razeghi, M. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett. 98, 181106 (2011).
Lyakh, A. et al. 1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm. Appl. Phys. Lett. 92, 111110 (2008).
Lee, B. G. et al. Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy. Appl. Phys. Lett. 91, 231101 (2007).
Mukherjee, N. & Patel, C. K. N. Molecular fine structure and transition dipole moment of NO2 using an external cavity quantum cascade laser. Chem. Phys. Lett. 462, 10–13 (2008).
Weidmann, D., Tsai, T., Macleod, N. A. & Wysocki, G. Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry. Opt. Lett. 36, 1951–1953 (2011).
Fujita, K., Edamura, T., Furuta, S. & Yamanishi, M. High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design. Appl. Phys. Lett. 96, 241107, (2010).
Luo, G. P. et al. Grating-tuned external-cavity quantum-cascade semiconductor lasers. Appl. Phys. Lett. 78, 2834–2836 (2001).
Mujagić, E. et al. Two-dimensional broadband distributed-feedback quantum cascade laser arrays. Appl. Phys. Lett. 98, 141101 (2011).
Wysocki, G. et al. Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing. Appl. Phys. B 92, 305–311 (2008).
Maulini, R., Beck, M., Faist, J. & Gini, E. Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers. Appl. Phys. Lett. 84, 1659–1661 (2004).
Blaser, S. et al. Low-consumption (<2W) continuous-wave singlemode quantum-cascade lasers grown by metal-organic vapour-phase epitaxy. Electron. Lett. 43, 1201–1202 (2007).
Hoffman, A. J. et al. Lasing-induced reduction in core heating in high wall plug efficiency quantum cascade lasers. Appl. Phys. Lett. 94, 041101 (2009).
Yu Yao and Anthony J. Hoffman: These two authors contributed equally to this work, and significantly more so than the third author
Wittmann, A. et al. Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies. Appl. Phys. Lett. 89, 141116 (2006).
Howard, S. S., Liu, Z. J. & Gmachl, C. F. Thermal and stark-effect roll-over of quantum-cascade lasers. IEEE J. Quant. Electron. 44, 319–323 (2008).
Dougakiuchi, T. et al. Broadband tuning of external cavity dual-upper-state quantum-cascade lasers in continuous wave operation. Appl. Phys. Express 4, 102101 (2011).
Liu, P. Q., Wang, X. J., Fan, J. Y. & Gmachl, C. F. Single-mode quantum cascade lasers based on a folded Fabry–Pérot cavity. Appl. Phys. Lett. 98, 061110, (2011).
Gmachl, C. et al. High temperature (T ≥ 425K) pulsed operation of quantum cascade lasers. Electron. Lett. 36, 723–725 (2000).
Bai, Y. B., Slivken, S., Kuboya, S., Darvish, S. R. & Razeghi, M. Quantum cascade lasers that emit more light than heat. Nature Photon. 4, 99–102 (2010).
Wysocki, G. et al. Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications. Appl. Phys. B 81, 769–777 (2005).
Semiconductorlaser
Fuchs, P. et al. Widely tunable quantum cascade lasers with coupled cavities for gas detection. Appl. Phys. Lett. 97, 181111 (2010).
Shin, J. C. et al. Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers. Appl. Phys. Lett. 94, 201103 (2009).
Carras, M. & De Rossi, A. Photonic modes of metallodielectric periodic waveguides in the midinfrared spectral range. Phys. Rev. B 74, 235120 (2006).
Slivken, S., Matlis, A., Rybaltowski, A., Wu, Z. & Razeghi, M. Low-threshold 7.3 μm quantum cascade lasers grown by gas-source molecular beam epitaxy. Appl. Phys. Lett. 74, 2758–2760 (1999).
Quantumwell
Cathabard, O., Teissier, R., Devenson, J., Moreno, J. C. & Baranov, A. N. Quantum cascade lasers emitting near 2.6 μm. Appl. Phys. Lett. 96, 141110 (2010).
Beck, M. et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301–305 (2002).
Maulini, R., Yarekha, D. A., Bulliard, J. M., Giovannini, M. & Faist, J. Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser. Opt. Lett. 30, 2584–2586 (2005).
Bai, Y. et al. Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power. Appl. Phys. Lett. 92, 101105 (2008).
Yao, Y. et al. Broadband quantum cascade laser gain medium based on a 'continuum-to-bound' active region design. Appl. Phys. Lett. 96, 211106 (2010).
Carras, M. et al. Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers. Appl. Phys. Lett. 96, 161105 (2010).
Finger, N., Schrenk, W. & Gornik, E. Analysis of TM-polarized DFB laser structures with metal surface gratings. IEEE J. Quant. Electron. 36, 780–786 (2000).
Maulini, R., Mohan, A., Giovannini, M., Faist, J. & Gini, E. External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade. Appl. Phys. Lett. 88, 201113 (2006).
Lee, B. G. et al. Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm. IEEE Photon. Tech. Lett. 21, 914–916 (2009).
Sirtori, C. et al. Mid-infrared (8.5 μm) semiconductor lasers operating at room temperature. IEEE Photon. Tech. Lett. 9, 294–296 (1997).
Each type of laser offers its own set of advantages, disadvantages, and applications, making it important to carefully consider the requirements of a specific application. Solid-state lasers provide high power and precise beam quality, gas lasers offer versatility in wavelength and high power, semiconductor lasers are compact and efficient, and fiber lasers combine high power scalability with excellent beam quality. Understanding the strengths and limitations of different laser types is key to selecting the most appropriate laser for a given application, ensuring optimal performance and successful outcomes.
Ulrich, J., Kreuter, J., Schrenk, W., Strasser, G. & Unterrainer, K. Long wavelength (15 and 23 μm) GaAs/AlGaAs quantum cascade lasers. Appl. Phys. Lett. 80, 3691–3693 (2002).
Faist, J., Beck, M., Aellen, T. & Gini, E. Quantum-cascade lasers based on a bound-to-continuum transition. Appl. Phys. Lett. 78, 147–149 (2001).
Yao, Y., Hoffman, A. & Gmachl, C. Mid-infrared quantum cascade lasers. Nature Photon 6, 432–439 (2012). https://doi.org/10.1038/nphoton.2012.143
Xie, F. et al. High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum-cascade lasers at λ < 5.2 μm. Appl. Phys. Lett. 95, 091110 (2009).
Lu, Q. Y., Bai, Y., Bandyopadhyay, N., Slivken, S. & Razeghi, M. Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output. Appl. Phys. Lett. 97, 231119 (2010).
Golka, S., Pflugl, C., Schrenk, W. & Strasser, G. Quantum cascade lasers with lateral double-sided distributed feedback grating. Appl. Phys. Lett. 86, 111103 (2005).
Revin, D. G. et al. InP-based midinfrared quantum cascade lasers for wavelengths below 4 μm. IEEE J. Sel. Top. Quant. 17, 1417–1425 (2011).
Yu, J. S. et al. High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8 μm. Appl. Phys. Lett. 87, 041104 (2005).
Xie, F. et al. High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum-cascade lasers at λ ∼ 5.2 μm. Appl. Phys. Lett. 95, 091110 (2009).
Cooling Requirements: Due to their high power output, solid-state lasers may require cooling systems to manage heat dissipation, increasing complexity and cost.
The design flexibility of quantum cascade lasers has enabled their expansion into mid-infrared wavelengths of 3–25 μm. This Review focuses on the two major areas of recent improvement: power and power efficiency, and spectral performance.
Sirtori, C. et al. Quantum cascade laser with plasmon-enhanced wave-guide operating at 8.4 μm wavelength. Appl. Phys. Lett. 66, 3242–3244 (1995).
DFBlaser
Gmachl, C., Sivco, D. L., Colombelli, R., Capasso, F. & Cho, A. Y. Ultra-broadband semiconductor laser. Nature 415, 883–887 (2002).
Gresch, T., Giovannini, M., Hoyer, N. & Faist, J. Quantum cascade lasers with large optical waveguides. IEEE Photon. Tech. Lett. 18, 544–546 (2006).
Bai, Y., Darvish, S. R., Bandyopadhyay, N., Slivken, S. & Razeghi, M. Optimizing facet coating of quantum cascade lasers for low power consumption. J. Appl. Phys. 109, 053103 (2011).
Weidmann, D. & Wysocki, G. High-resolution broadband (>100 cm−1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser. Opt. Express 17, 248–259 (2009).
Xie, F. et al. Continuous wave operation of distributed feedback quantum cascade lasers with low threshold voltage and lower power consumption. Proc. SPIE 8277, 82770S (2012).
Bai, Y., Bandyopadhyay, N., Tsao, S., Slivken, S. & Razeghi, M. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl. Phys. Lett. 98, 181102 (2011).
Hancock, G., van Helden, J. H., Peverall, R., Ritchie, G. A. D. & Walker, R. J. Direct and wavelength modulation spectroscopy using a CW external cavity quantum cascade laser. Appl. Phys. Lett. 94, 201110 (2009).
Green, R. P. et al. Room-temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 83, 1921–1922 (2003).
Gokden, B., Bai, Y., Bandyopadhyay, N., Slivken, S. & Razeghi, M. Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ∼ 4.36 μm. Appl. Phys. Lett. 97, 131112 (2010).
Liu, P. Q., Sladek, K., Wang, X. J., Fan, J. Y. & Gmachl, C. F. Single-mode quantum cascade lasers employing a candy-cane shaped monolithic coupled cavity. Appl. Phys. Lett. 99, 241112 (2011).
Yao, Y., Wang, X. J., Fan, J. Y. & Gmachl, C. F. High performance 'continuum-to-continuum' quantum cascade lasers with a broad gain bandwidth of over 400 cm−1. Appl. Phys. Lett. 97, 081115 (2010).
Hoffman, A. J. et al. Low voltage-defect quantum cascade laser with heterogeneous injector regions. Opt. Express 15, 15818–15823 (2007).
Semmel, J., Kaiser, W., Hofmann, H., Hofling, S. & Forchel, A. Single mode emitting ridge waveguide quantum cascade lasers coupled to an active ring resonator filter. Appl. Phys. Lett. 93, 211106 (2008).
Bai, Y., Slivken, S., Darvish, S. R. & Razeghi, M. Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency. Appl. Phys. Lett. 93, 021103 (2008).
Fujita, K. et al. Broad-gain (Δλ/λ0 ∼ 0.4), temperature-insensitive (T0 ∼ 510K) quantum cascade lasers. Opt. Express 19, 2694–2701 (2011).
Bismuto, A., Beck, M. & Faist, J. High power Sb-free quantum cascade laser emitting at 3.3 μm above 350 K. Appl. Phys. Lett. 98, 191104 (2011).
Blaser, S. et al. Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ ≈ 5.4 μm. Appl. Phys. Lett. 86, 041109 (2005).
Zhang, J. C. et al. Low-threshold continuous-wave operation of distributed-feedback quantum cascade laser at λ ∼ 4.6 μm. IEEE Photon. Tech. Lett. 23, 1334–1336 (2011).
Howard, S. S. et al. High-performance quantum cascade lasers: Optimized design through waveguide and thermal modeling. IEEE J. Sel. Top. Quant. 13, 1054–1064 (2007).
Wakayama, Y., Iwamoto, S. & Arakawa, Y. Switching operation of lasing wavelength in mid-infrared ridge-waveguide quantum cascade lasers coupled with microcylindrical cavity. Appl. Phys. Lett. 96, 171104 (2010).
Maulini, R., Lyakh, A., Tsekoun, A. & Patel, C. K. N. λ ∼ 7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature. Opt. Express 19, 17203–17211 (2011).
Faist, J. et al. High power mid-infrared (λ > 5 μm) quantum cascade lasers operating above room temperature. Appl. Phys. Lett. 68, 3680–3682 (1996).
Diehl, L. et al. High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K. Appl. Phys. Lett. 88, 201115 (2006).
Evans, A. et al. Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency. Appl. Phys. Lett. 91, 071101 (2007).
Mid-infrared quantum cascade lasers are semiconductor injection lasers whose active core implements a multiple-quantum-well structure. Relying on a designed staircase of intersubband transitions allows free choice of emission wavelength and, in contrast with diode lasers, a low transparency point that is similar to a classical, atomic four-level laser system. In recent years, this design flexibility has expanded the achievable wavelength range of quantum cascade lasers to ∼3–25 μm and the terahertz regime, and provided exemplary improvements in overall performance. Quantum cascade lasers are rapidly becoming practical mid-infrared sources for a variety of applications such as trace-chemical sensing, health monitoring and infrared countermeasures. In this Review we focus on the two major areas of recent improvement: power and power efficiency, and spectral performance.
Faist, J. et al. Continuous-wave operation of a vertical transition quantum cascade laser above T=80 K. Appl. Phys. Lett. 67, 3057–3059 (1995).
Wittmann, A. et al. Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K. IEEE Photon. Tech. Lett. 21, 814–816 (2009).
Mujagić, E. et al. Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers. Appl. Phys. Lett. 96, 031111 (2010).
Kennedy, K. et al. High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings. Appl. Phys. Lett. 89, 201117 (2006).
Higher Cost: Solid-state lasers tend to have higher initial costs compared to some other laser types, making them less accessible for certain applications.
Beck, M. et al. Buried heterostructure quantum cascade lasers with a large optical cavity waveguide. IEEE Photon. Tech. Lett. 12, 1450–1452 (2000).
Slight, T. J. et al. λ ∼ 3.35 μm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating. IEEE Photon. Tech. Lett. 23, 420–422 (2011).
Chaparala, S. C., Xie, F., Caneau, C., Zah, C. E. & Hughes, L. C. Design guidelines for efficient thermal management of mid-infrared quantum cascade lasers. IEEE T. Compon. Pack. T. 1, 1975–1982 (2001).
Yu, J. S., Slivken, S., Evans, A., Doris, L. & Razeghi, M. High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature. Appl. Phys. Lett. 83, 2503–2505 (2003).
Vurgaftman, I. & Meyer, J. R. Photonic-crystal distributed-feedback quantum cascade lasers. IEEE J. Quant. Electron. 38, 592–602 (2002).
Tredicucci, A. et al. High performance interminiband quantum cascade lasers with graded superlattices. Appl. Phys. Lett. 73, 2101–2103 (1998).
量子级联激光器
Escarra, M. D. et al. Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy. Appl. Phys. Lett. 94, 251114 (2009).
Fujita, K., Edamura, T., Furuta, S. & Yamanishi, M. High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design. Appl. Phys. Lett. 96, 241107 (2010).
Quantumdotlaser
Faist, J. Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits. Appl. Phys. Lett. 90, 253512 (2007).
Colombelli, R. et al. Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths. Appl. Phys. Lett. 78, 2620–2622 (2001).
Gokden, B., Tsao, S., Haddadi, A., Bandyopadhyay, N. & Slivken, S. Widely tunable, single-mode, high-power quantum cascade lasers. SPIE Proc. Integrated Photonics: Materials, Devices, and Applications 8069, 806905 (2011).
Page, H. et al. High peak power (1.1W) (Al)GaAs quantum cascade laser emitting at 9.7 μm. Electron. Lett. 35, 1848–1849 (1999).
Faist, J. et al. Short wavelength (λ ∼ 3.4 μm) quantum cascade laser based on strained compensated InGaAs/AlInAs. Appl. Phys. Lett. 72, 680–682 (1998).
Lu, Q. Y., Bai, Y., Bandyopadhyay, N., Slivken, S. & Razeghi, M. 2. 4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett. 98, 181106 (2011).