Correlation of the Abbe Number, the Refractive Index, and ... - abbe number
Focal Length varies with zoom, and the Exif data with the image should report focal length (in coarse zoom steps, as best it can). Actual focal length could be determined by the Magnification (Wikipedia) and distance. The distance from the front nodal point to the object in the subject plane (s1), and the distance from the rear nodal point to the image plane (s2) (when focused) are related by this Thin Lens equation (Wikipedia), which the diagram and formulas below simplify. If OK with a little geometry and algebra, you can see the derivation of this classic Thin Lens Equation at the Khan Academy. In this equation, we can see that if the subject at s1 is at infinity, then 1/s1 is zero, so then s2 = f. This is the marked focal length that applies when focused at infinity. What camera lenses call the focused distance is s = s1 + s2, from subject to the sensor plane. Also if at 1:1 magnification (equal image size on both sides of lens), then s1 = s2, saying that the working macro distance in front of the lens node (extended at 1:1) is equal to the distance to the sensor image plane (both sides at 2x focal length). This makes f/stop number be 2x, which is 2 EV light loss. Those are basics. Internal focusing macro lenses can slightly reduce this light loss, but it is still near 2 EV. The Math Sensor dimension / 2focal length = Field dimension / 2distance This diagram is the basis of Field of View and Depth of Field calculations. The half angles form geometry's Similar Triangles from the equal angles on each side of the lens. The /2 cancels out on both sides. This equation simply says that the equal angles have the same trigonometry tangent (opposite / adjacent) on each side of lens (but the /2 must be included then). The lens is simply an enlargement device (actually a size reduction) proportionally to the ratio of focal length / field distance. But be aware that focal length lengthens with closer focus distance (and is generally unknown then (focal length is 2x at 1:1 magnification, but lens internal focusing can make changes). Focusing and zooms and especially internal focusing change focal length internally. The focal length marked on the lens is at infinity focus. Focal length is generally near close enough at the closest focus of a regular lens, but calculations will be more accurate if focus is out a bit further. But macro work uses Magnification instead of subject distance. This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
Field of viewvs angleof view
In this equation, we can see that if the subject at s1 is at infinity, then 1/s1 is zero, so then s2 = f. This is the marked focal length that applies when focused at infinity. What camera lenses call the focused distance is s = s1 + s2, from subject to the sensor plane. Also if at 1:1 magnification (equal image size on both sides of lens), then s1 = s2, saying that the working macro distance in front of the lens node (extended at 1:1) is equal to the distance to the sensor image plane (both sides at 2x focal length). This makes f/stop number be 2x, which is 2 EV light loss. Those are basics. Internal focusing macro lenses can slightly reduce this light loss, but it is still near 2 EV. The Math Sensor dimension / 2focal length = Field dimension / 2distance This diagram is the basis of Field of View and Depth of Field calculations. The half angles form geometry's Similar Triangles from the equal angles on each side of the lens. The /2 cancels out on both sides. This equation simply says that the equal angles have the same trigonometry tangent (opposite / adjacent) on each side of lens (but the /2 must be included then). The lens is simply an enlargement device (actually a size reduction) proportionally to the ratio of focal length / field distance. But be aware that focal length lengthens with closer focus distance (and is generally unknown then (focal length is 2x at 1:1 magnification, but lens internal focusing can make changes). Focusing and zooms and especially internal focusing change focal length internally. The focal length marked on the lens is at infinity focus. Focal length is generally near close enough at the closest focus of a regular lens, but calculations will be more accurate if focus is out a bit further. But macro work uses Magnification instead of subject distance. This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
Field size and focal length are linear in field of view (half of sensor dimension or twice the focal length both produce half the field dimension). But the angle is a tangent function, which is Not straight-line linear (the angle is approximately linear if angle is not more than about 10 degrees (called the Small-Angle Approximation).
The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
Sensor dimension / 2focal length = Field dimension / 2distance This diagram is the basis of Field of View and Depth of Field calculations. The half angles form geometry's Similar Triangles from the equal angles on each side of the lens. The /2 cancels out on both sides. This equation simply says that the equal angles have the same trigonometry tangent (opposite / adjacent) on each side of lens (but the /2 must be included then). The lens is simply an enlargement device (actually a size reduction) proportionally to the ratio of focal length / field distance. But be aware that focal length lengthens with closer focus distance (and is generally unknown then (focal length is 2x at 1:1 magnification, but lens internal focusing can make changes). Focusing and zooms and especially internal focusing change focal length internally. The focal length marked on the lens is at infinity focus. Focal length is generally near close enough at the closest focus of a regular lens, but calculations will be more accurate if focus is out a bit further. But macro work uses Magnification instead of subject distance. This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
Distance to Object * = Real Object height * × Focal Length (mm) Object height on sensor (mm) Real Object height * = Distance to Object * × Object height on sensor (mm) Focal Length (mm) * feet or meters (but both same units) There are Other possible arrangements. But this next one must use Field dimension and Height converted to mm (304.8 mm per foot), because each ratio must be a dimensionless number. Magnification = Distance to Object (mm) Focal Length (mm) = Real Object height (mm) Object height on sensor (mm) This is magnification on the sensor or film. The image must still be enlarged for viewing.1:1 macro reproduction at 1× is when these two top and bottom values are equal.Distant object size is reduced greatly, like perhaps maybe magnification of 0.001x or less.
1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
There is a Field of View Calculator here, but this page is about the math. There are approximations in calculations. The math is precise, but the data is less so. The required Focal length and Sensor Size are rounded specifications, losing a bit of precision. This little difference at the small sensor gets magnified in the field and scene. However, the results certainly are close enough to be very useful in any practical case. My experience is that the field is fairly accurate (at distances of at least a meter or so), assuming you actually know your parameters. Some problems are: You absolutely must know the actual correct sensor size in mm. Or the FOV calculator here can make a reasonable approximation of sensor size from the accurate Crop Factor. If not accurate, the field of view calculation will not be accurate. If you're guessing, your results will likely be troubled. Please see this summary of Issues determining Sensor Size which might help. You must know the actual correct lens focal length in mm. Zoom lens focal length is different at each and every zoom position. The image EXIF data may show focal length (but it is rounded in some degree). And of course just guessing about the field distance may be an approximation, or may not be at all accurate. Field of View calculators do NOT work for macro distances. Macro uses reproduction ration, like 1:1. Thin Lens Equation The Marked focal length of any lens is a rounded nominal number, like 50 or 60 mm. The actual can be a few percent different. Furthermore, the Marked focal length is only applicable to focus at infinity. Focal length normally increases when lens is extended forward to focus closer. Lens specs normally indicate this internal extension at closest focus distance. But internal focusing lenses can do internal tricks with focal length (some zooms and macro lenses can be shorter when up close, instead of longer). But generally speaking, focal length becomes a little longer at very close distances (2x longer at 1:1), so field of view could be a little smaller, but should be insignificant as long as magnification is greater than 0.1x, which in regular lenses is normally near their Minimum focus distance. But this calculation does not include macro distances. We are only seeking a ballpark FOV number anyway, we adjust small differences with our subject framing or cropping, but vague guesses about your distance and sensor size or focal length don't help FOV accuracy. And a fisheye lens is a different animal, wider view than this formula predicts. A regular lens is rectilinear, meaning it shows straight lines as straight lines, not curved. A fisheye is rather unconcerned about this distortion, and can show a wider view, poorly purists might say, but very wide, and very possibly interesting. Focal Length varies with zoom, and the Exif data with the image should report focal length (in coarse zoom steps, as best it can). Actual focal length could be determined by the Magnification (Wikipedia) and distance. The distance from the front nodal point to the object in the subject plane (s1), and the distance from the rear nodal point to the image plane (s2) (when focused) are related by this Thin Lens equation (Wikipedia), which the diagram and formulas below simplify. If OK with a little geometry and algebra, you can see the derivation of this classic Thin Lens Equation at the Khan Academy. In this equation, we can see that if the subject at s1 is at infinity, then 1/s1 is zero, so then s2 = f. This is the marked focal length that applies when focused at infinity. What camera lenses call the focused distance is s = s1 + s2, from subject to the sensor plane. Also if at 1:1 magnification (equal image size on both sides of lens), then s1 = s2, saying that the working macro distance in front of the lens node (extended at 1:1) is equal to the distance to the sensor image plane (both sides at 2x focal length). This makes f/stop number be 2x, which is 2 EV light loss. Those are basics. Internal focusing macro lenses can slightly reduce this light loss, but it is still near 2 EV. The Math Sensor dimension / 2focal length = Field dimension / 2distance This diagram is the basis of Field of View and Depth of Field calculations. The half angles form geometry's Similar Triangles from the equal angles on each side of the lens. The /2 cancels out on both sides. This equation simply says that the equal angles have the same trigonometry tangent (opposite / adjacent) on each side of lens (but the /2 must be included then). The lens is simply an enlargement device (actually a size reduction) proportionally to the ratio of focal length / field distance. But be aware that focal length lengthens with closer focus distance (and is generally unknown then (focal length is 2x at 1:1 magnification, but lens internal focusing can make changes). Focusing and zooms and especially internal focusing change focal length internally. The focal length marked on the lens is at infinity focus. Focal length is generally near close enough at the closest focus of a regular lens, but calculations will be more accurate if focus is out a bit further. But macro work uses Magnification instead of subject distance. This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
I. Ideal Optics. idealoptics. ·. 0 seguidores. ·. Siguiendo a 0. Seguir. idealoptics aún no ha guardado ningún Pin.
Some hex keys have a rounded end, allowing them to be used at an angle off-axis to the screw. This type of hex key was invented in 1964 by the Bondhus Corporation[19] and is manufactured by several companies. While providing access to otherwise inaccessible screws, thinning of the tool shaft to create the rounded shape renders it weaker than the straight-shaft version, limiting the torque that can be applied; in addition, the rounded end only makes point contact with the screw as opposed to the line contact made by straight-shaft keys.
Sensor Width mm × Distance Focal Length mm = Field Width Field Width × Focal Length mm Sensor Width mm = Distance This looks simple because it is (but correct sensor size and focal length are required). Twice the focal length is half the field, or twice the distance is twice the field dimension. And assuming use of a proper lens designed for the sensor, twice the sensor dimension is twice the field, which is why a smaller "cropped" sensor sees a smaller field unless compensated with a shorter lens. These ratios above are just the trig tangent (opposite over adjacent), necessarily equal for the equal angles, but using the ratios is simpler math for the field dimensions. But computing the angle of view requires trigonometry, for dimensions of Width, Height, or Diagonal angles of view. The 2's do NOT cancel out for this trig tangent. Field angle of view = 2 x arctan ((sensor dimension (mm) / 2) / focal length (mm)) 2 × arctan( Sensor Width mm 2 × Focal Length mm ) = Degrees
These ratios above are just the trig tangent (opposite over adjacent), necessarily equal for the equal angles, but using the ratios is simpler math for the field dimensions. But computing the angle of view requires trigonometry, for dimensions of Width, Height, or Diagonal angles of view. The 2's do NOT cancel out for this trig tangent.
For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
However, the Field of View calculator and the Depth of Field calculators instead are designed around the Thin Lens Model, and are measured to a node point inside a "Normal" lens, perhaps near its middle. So calculated distances are measured to the designed focal nodes. We are rarely told where the nodes are designed, often both are inside the lens body somewhere, but some are outside. For telephoto lenses, the rear node H' (focal length from sensor plane) is instead designed just outside the front lens element, and its field H node is the focal length dimension approximately in front of the front lens surface (see an example). The designer's term "telephoto" is about this reposition of the nodal point so that the physical lens is NOT longer than its focal length. And in wide angle lenses for DSLR, the rear node H' is generally designed behind the rear lens surface, at least for SLR (lens is moved well forward to provide room to allow the larger SLR mirror to rise... 12 mm lens but 24 mm mirror, etc). This difference is only a few inches, but it affects where the focused distance is measured to the sensor. And it shifts a bit as the lens is focused much closer. Repeating, the focal length marked on the lens is specified for when focus at infinity, and focal length is longer when focused closer. But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
The Math Sensor dimension / 2focal length = Field dimension / 2distance This diagram is the basis of Field of View and Depth of Field calculations. The half angles form geometry's Similar Triangles from the equal angles on each side of the lens. The /2 cancels out on both sides. This equation simply says that the equal angles have the same trigonometry tangent (opposite / adjacent) on each side of lens (but the /2 must be included then). The lens is simply an enlargement device (actually a size reduction) proportionally to the ratio of focal length / field distance. But be aware that focal length lengthens with closer focus distance (and is generally unknown then (focal length is 2x at 1:1 magnification, but lens internal focusing can make changes). Focusing and zooms and especially internal focusing change focal length internally. The focal length marked on the lens is at infinity focus. Focal length is generally near close enough at the closest focus of a regular lens, but calculations will be more accurate if focus is out a bit further. But macro work uses Magnification instead of subject distance. This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
But be aware that focal length lengthens with closer focus distance (and is generally unknown then (focal length is 2x at 1:1 magnification, but lens internal focusing can make changes). Focusing and zooms and especially internal focusing change focal length internally. The focal length marked on the lens is at infinity focus. Focal length is generally near close enough at the closest focus of a regular lens, but calculations will be more accurate if focus is out a bit further. But macro work uses Magnification instead of subject distance. This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
Hex keys are best known as "Allen keys" or "Allen wrenches" in English-speaking countries like the UK, Australia, Canada and the U.S. and in Spanish-speaking countries such as Spain and Mexico (The "Allen" name is a registered trademark, originated by the Allen Manufacturing Company of Hartford, Connecticut, circa 1910.[1] The brand is now owned by Apex Tool Group, LLC, which was acquired by Bain Capital in 2014).
But computing the angle of view requires trigonometry, for dimensions of Width, Height, or Diagonal angles of view. The 2's do NOT cancel out for this trig tangent.
This is magnification on the sensor or film. The image must still be enlarged for viewing.1:1 macro reproduction at 1× is when these two top and bottom values are equal.Distant object size is reduced greatly, like perhaps maybe magnification of 0.001x or less.
Real Object height * = Distance to Object * × Object height on sensor (mm) Focal Length (mm) * feet or meters (but both same units) There are Other possible arrangements. But this next one must use Field dimension and Height converted to mm (304.8 mm per foot), because each ratio must be a dimensionless number. Magnification = Distance to Object (mm) Focal Length (mm) = Real Object height (mm) Object height on sensor (mm) This is magnification on the sensor or film. The image must still be enlarged for viewing.1:1 macro reproduction at 1× is when these two top and bottom values are equal.Distant object size is reduced greatly, like perhaps maybe magnification of 0.001x or less.
DOF calculator
Magnification = Distance to Object (mm) Focal Length (mm) = Real Object height (mm) Object height on sensor (mm) This is magnification on the sensor or film. The image must still be enlarged for viewing.1:1 macro reproduction at 1× is when these two top and bottom values are equal.Distant object size is reduced greatly, like perhaps maybe magnification of 0.001x or less.
The Math Sensor dimension / 2focal length = Field dimension / 2distance This diagram is the basis of Field of View and Depth of Field calculations. The half angles form geometry's Similar Triangles from the equal angles on each side of the lens. The /2 cancels out on both sides. This equation simply says that the equal angles have the same trigonometry tangent (opposite / adjacent) on each side of lens (but the /2 must be included then). The lens is simply an enlargement device (actually a size reduction) proportionally to the ratio of focal length / field distance. But be aware that focal length lengthens with closer focus distance (and is generally unknown then (focal length is 2x at 1:1 magnification, but lens internal focusing can make changes). Focusing and zooms and especially internal focusing change focal length internally. The focal length marked on the lens is at infinity focus. Focal length is generally near close enough at the closest focus of a regular lens, but calculations will be more accurate if focus is out a bit further. But macro work uses Magnification instead of subject distance. This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
However, the Field of View calculator and the Depth of Field calculators instead are designed around the Thin Lens Model, and are measured to a node point inside a "Normal" lens, perhaps near its middle. So calculated distances are measured to the designed focal nodes. We are rarely told where the nodes are designed, often both are inside the lens body somewhere, but some are outside. For telephoto lenses, the rear node H' (focal length from sensor plane) is instead designed just outside the front lens element, and its field H node is the focal length dimension approximately in front of the front lens surface (see an example). The designer's term "telephoto" is about this reposition of the nodal point so that the physical lens is NOT longer than its focal length. And in wide angle lenses for DSLR, the rear node H' is generally designed behind the rear lens surface, at least for SLR (lens is moved well forward to provide room to allow the larger SLR mirror to rise... 12 mm lens but 24 mm mirror, etc). This difference is only a few inches, but it affects where the focused distance is measured to the sensor. And it shifts a bit as the lens is focused much closer. Repeating, the focal length marked on the lens is specified for when focus at infinity, and focal length is longer when focused closer. But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
Object height on sensor (mm)Focal length (mm) = Real Object size *Distance to Object * Rearrange this ratio to compute desired unknown value. Examples: Distance to Object * = Real Object height * × Focal Length (mm) Object height on sensor (mm) Real Object height * = Distance to Object * × Object height on sensor (mm) Focal Length (mm) * feet or meters (but both same units) There are Other possible arrangements. But this next one must use Field dimension and Height converted to mm (304.8 mm per foot), because each ratio must be a dimensionless number. Magnification = Distance to Object (mm) Focal Length (mm) = Real Object height (mm) Object height on sensor (mm) This is magnification on the sensor or film. The image must still be enlarged for viewing.1:1 macro reproduction at 1× is when these two top and bottom values are equal.Distant object size is reduced greatly, like perhaps maybe magnification of 0.001x or less.
Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
With a convenient carabiner clip, our new travel lens cloths come in a fun patterned case to coordinate with the OO Eyewear Pod and OO Sunglasses.
3. Focal length. The longer your focal length, the shallower the depth of field. So if your subject is 33 feet (10 meters) away and your aperture is set to f/4, ...
And a fisheye lens is a different animal, wider view than this formula predicts. A regular lens is rectilinear, meaning it shows straight lines as straight lines, not curved. A fisheye is rather unconcerned about this distortion, and can show a wider view, poorly purists might say, but very wide, and very possibly interesting.
World War II, with its unprecedented push for industrial production of every kind, is probably the event that first put most laypersons in contact with the internal-wrenching hexagon drive. (Popular Science magazine would note in 1946 "Cap screws and setscrews with heads recessed to take hexagonal-bar wrenches are coming into increasing use.")[9]
Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
Object height on sensor (mm) = Sensor height (mm) × Object height (pixels) Sensor height (pixels) Object height on sensor (mm)Focal length (mm) = Real Object size *Distance to Object * Rearrange this ratio to compute desired unknown value. Examples: Distance to Object * = Real Object height * × Focal Length (mm) Object height on sensor (mm) Real Object height * = Distance to Object * × Object height on sensor (mm) Focal Length (mm) * feet or meters (but both same units) There are Other possible arrangements. But this next one must use Field dimension and Height converted to mm (304.8 mm per foot), because each ratio must be a dimensionless number. Magnification = Distance to Object (mm) Focal Length (mm) = Real Object height (mm) Object height on sensor (mm) This is magnification on the sensor or film. The image must still be enlarged for viewing.1:1 macro reproduction at 1× is when these two top and bottom values are equal.Distant object size is reduced greatly, like perhaps maybe magnification of 0.001x or less. Back to the general ideas, of all above: This Distance to Field doesn't necessarily mean to subject or to focus point. Here it means the distance to the point where you want field size calculated (perhaps the background, computing what will show in the picture). As noted, use either meters or feet (the units all cancel out). And/or substitute width for height if appropriate. Just be consistent, and solve for the unknown. FWIW, cameras report focus distance as s, measured to the sensor surface. Lens calculations however compute with distance d, in front of the lens node (which except for telephoto lenses, is normally inside the lens body). The Thin Lens Equations use the distance d in front of the lens node, but the lens specifications are "focused distance" (marked s in the diagram) which is to the sensor plane. Working Distance = d = S1 (distance in front of lens) Focal Length = f = S2 (distance behind lens) Focus Distance = d + f (subject distance to the sensor plane) The Thin Lens Model simplifies, and is practical and adequate for most computing, even if this model has one glass element and one central node point. Camera lenses have multiple glass elements, and are "thick lenses", much more complex, and have two node points, often called H for the field view side node, and H' for the sensor view side node. These two nodes might be designed a few inches apart, but they necessarily still see the same angle. The actual node position normally only matters to us for close macro distances, or perhaps in efforts to correct panoramic parallax. Sensor focal plane marking ϴ This front node is often a point inside the lens, perhaps crudely assumed about the middle of the lens (but it does move with zoom), but it is small and can often be ignored. Lens specifications normally instead measure field focus distance from the sensor, so you could subtract a few inches from your subject distance (to be at that node) to compute Field of View, but normally this is not significant except at extremely close focus and macro distances. It is more significant for macro distances. Example, the Nikon 105mm f/2.8 VR macro lens has specification "Minimum focus distance: 31.4 cm (1.03 feet), which is measured to the sensor plane at rear of the camera top. There's a small measuring symbol on top of the camera there, an O with a line through it (shown on this Nikon DSLR, or is often on the side of the pentaprism dome) to mark the sensor focal plane location. But at 1:1, a reliable chart of macro lens working distances says that 105 mm lens has a Working Distance (in front of lens) at 1:1, which is significantly less, 14.8 cm (5.8 inches), which differs by 16.6 mm due to the length of the lens and thickness of the camera body. SO NOTE: the terms Focal Length and lens focus distance are measured to the sensor plane, to that mark just mentioned. But Field of View and Depth of Field are computed to a node inside or near the lens. However, the Field of View calculator and the Depth of Field calculators instead are designed around the Thin Lens Model, and are measured to a node point inside a "Normal" lens, perhaps near its middle. So calculated distances are measured to the designed focal nodes. We are rarely told where the nodes are designed, often both are inside the lens body somewhere, but some are outside. For telephoto lenses, the rear node H' (focal length from sensor plane) is instead designed just outside the front lens element, and its field H node is the focal length dimension approximately in front of the front lens surface (see an example). The designer's term "telephoto" is about this reposition of the nodal point so that the physical lens is NOT longer than its focal length. And in wide angle lenses for DSLR, the rear node H' is generally designed behind the rear lens surface, at least for SLR (lens is moved well forward to provide room to allow the larger SLR mirror to rise... 12 mm lens but 24 mm mirror, etc). This difference is only a few inches, but it affects where the focused distance is measured to the sensor. And it shifts a bit as the lens is focused much closer. Repeating, the focal length marked on the lens is specified for when focus at infinity, and focal length is longer when focused closer. But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here Copyright © 2018-2024 by Wayne Fulton - All rights are reserved.
In Germany the term "INBUS" is a registered trademark, originally an acronym for Innensechskantschraube Bauer und Schaurte, introduced in 1934 by the German company Bauer & Schaurte, in 2015 acquired by INBUS IP GmbH, Breckerfeld, Germany). INBUS IP GmbH was registered with the stated purpose of holding and licensing the trademark INBUS. In late 2015 to early 2016, the company sent out desist orders to companies using the name "Inbus" for hex keys.[10][11][12] Hex keys with the INBUS brand are now manufactured at HaFu Werkzeugfabrik H. J. Fuhrmann GmbH, Breckerfeld, North Rhine-Westphalia, as of 2017 accounting for 7% of the company's EUR 8 million turnover[13] and as "Unbrako" key or wrench in Scandinavia (originally a Pennsylvania company established in 1911, in 2008 acquired by Deepak Fasteners Limited).[14] In Italy, it is known as brugola, for the company Officine Egidio Brugola (established 1926). In 1946 Egidio Brugola patented an important variant with a spiral shank.
But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
The official Twitter of #FLIR Systems. See how our innovations are being used for your life, work, and mission. For support head to: ...
Rearrange this ratio to compute desired unknown value. Examples: Distance to Object * = Real Object height * × Focal Length (mm) Object height on sensor (mm) Real Object height * = Distance to Object * × Object height on sensor (mm) Focal Length (mm) * feet or meters (but both same units) There are Other possible arrangements. But this next one must use Field dimension and Height converted to mm (304.8 mm per foot), because each ratio must be a dimensionless number. Magnification = Distance to Object (mm) Focal Length (mm) = Real Object height (mm) Object height on sensor (mm) This is magnification on the sensor or film. The image must still be enlarged for viewing.1:1 macro reproduction at 1× is when these two top and bottom values are equal.Distant object size is reduced greatly, like perhaps maybe magnification of 0.001x or less.
The Math Sensor dimension / 2focal length = Field dimension / 2distance This diagram is the basis of Field of View and Depth of Field calculations. The half angles form geometry's Similar Triangles from the equal angles on each side of the lens. The /2 cancels out on both sides. This equation simply says that the equal angles have the same trigonometry tangent (opposite / adjacent) on each side of lens (but the /2 must be included then). The lens is simply an enlargement device (actually a size reduction) proportionally to the ratio of focal length / field distance. But be aware that focal length lengthens with closer focus distance (and is generally unknown then (focal length is 2x at 1:1 magnification, but lens internal focusing can make changes). Focusing and zooms and especially internal focusing change focal length internally. The focal length marked on the lens is at infinity focus. Focal length is generally near close enough at the closest focus of a regular lens, but calculations will be more accurate if focus is out a bit further. But macro work uses Magnification instead of subject distance. This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
fov和焦距的关系
Hex keys are made by imparting the hexagon cross-section to steel wire (for example, with a drawing die), then bending and shearing.
1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
Field of view
The Thin Lens Model simplifies, and is practical and adequate for most computing, even if this model has one glass element and one central node point. Camera lenses have multiple glass elements, and are "thick lenses", much more complex, and have two node points, often called H for the field view side node, and H' for the sensor view side node. These two nodes might be designed a few inches apart, but they necessarily still see the same angle. The actual node position normally only matters to us for close macro distances, or perhaps in efforts to correct panoramic parallax. Sensor focal plane marking ϴ This front node is often a point inside the lens, perhaps crudely assumed about the middle of the lens (but it does move with zoom), but it is small and can often be ignored. Lens specifications normally instead measure field focus distance from the sensor, so you could subtract a few inches from your subject distance (to be at that node) to compute Field of View, but normally this is not significant except at extremely close focus and macro distances. It is more significant for macro distances. Example, the Nikon 105mm f/2.8 VR macro lens has specification "Minimum focus distance: 31.4 cm (1.03 feet), which is measured to the sensor plane at rear of the camera top. There's a small measuring symbol on top of the camera there, an O with a line through it (shown on this Nikon DSLR, or is often on the side of the pentaprism dome) to mark the sensor focal plane location. But at 1:1, a reliable chart of macro lens working distances says that 105 mm lens has a Working Distance (in front of lens) at 1:1, which is significantly less, 14.8 cm (5.8 inches), which differs by 16.6 mm due to the length of the lens and thickness of the camera body. SO NOTE: the terms Focal Length and lens focus distance are measured to the sensor plane, to that mark just mentioned. But Field of View and Depth of Field are computed to a node inside or near the lens. However, the Field of View calculator and the Depth of Field calculators instead are designed around the Thin Lens Model, and are measured to a node point inside a "Normal" lens, perhaps near its middle. So calculated distances are measured to the designed focal nodes. We are rarely told where the nodes are designed, often both are inside the lens body somewhere, but some are outside. For telephoto lenses, the rear node H' (focal length from sensor plane) is instead designed just outside the front lens element, and its field H node is the focal length dimension approximately in front of the front lens surface (see an example). The designer's term "telephoto" is about this reposition of the nodal point so that the physical lens is NOT longer than its focal length. And in wide angle lenses for DSLR, the rear node H' is generally designed behind the rear lens surface, at least for SLR (lens is moved well forward to provide room to allow the larger SLR mirror to rise... 12 mm lens but 24 mm mirror, etc). This difference is only a few inches, but it affects where the focused distance is measured to the sensor. And it shifts a bit as the lens is focused much closer. Repeating, the focal length marked on the lens is specified for when focus at infinity, and focal length is longer when focused closer. But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
The Thin Lens Equations use the distance d in front of the lens node, but the lens specifications are "focused distance" (marked s in the diagram) which is to the sensor plane. Working Distance = d = S1 (distance in front of lens) Focal Length = f = S2 (distance behind lens) Focus Distance = d + f (subject distance to the sensor plane) The Thin Lens Model simplifies, and is practical and adequate for most computing, even if this model has one glass element and one central node point. Camera lenses have multiple glass elements, and are "thick lenses", much more complex, and have two node points, often called H for the field view side node, and H' for the sensor view side node. These two nodes might be designed a few inches apart, but they necessarily still see the same angle. The actual node position normally only matters to us for close macro distances, or perhaps in efforts to correct panoramic parallax. Sensor focal plane marking ϴ This front node is often a point inside the lens, perhaps crudely assumed about the middle of the lens (but it does move with zoom), but it is small and can often be ignored. Lens specifications normally instead measure field focus distance from the sensor, so you could subtract a few inches from your subject distance (to be at that node) to compute Field of View, but normally this is not significant except at extremely close focus and macro distances. It is more significant for macro distances. Example, the Nikon 105mm f/2.8 VR macro lens has specification "Minimum focus distance: 31.4 cm (1.03 feet), which is measured to the sensor plane at rear of the camera top. There's a small measuring symbol on top of the camera there, an O with a line through it (shown on this Nikon DSLR, or is often on the side of the pentaprism dome) to mark the sensor focal plane location. But at 1:1, a reliable chart of macro lens working distances says that 105 mm lens has a Working Distance (in front of lens) at 1:1, which is significantly less, 14.8 cm (5.8 inches), which differs by 16.6 mm due to the length of the lens and thickness of the camera body. SO NOTE: the terms Focal Length and lens focus distance are measured to the sensor plane, to that mark just mentioned. But Field of View and Depth of Field are computed to a node inside or near the lens. However, the Field of View calculator and the Depth of Field calculators instead are designed around the Thin Lens Model, and are measured to a node point inside a "Normal" lens, perhaps near its middle. So calculated distances are measured to the designed focal nodes. We are rarely told where the nodes are designed, often both are inside the lens body somewhere, but some are outside. For telephoto lenses, the rear node H' (focal length from sensor plane) is instead designed just outside the front lens element, and its field H node is the focal length dimension approximately in front of the front lens surface (see an example). The designer's term "telephoto" is about this reposition of the nodal point so that the physical lens is NOT longer than its focal length. And in wide angle lenses for DSLR, the rear node H' is generally designed behind the rear lens surface, at least for SLR (lens is moved well forward to provide room to allow the larger SLR mirror to rise... 12 mm lens but 24 mm mirror, etc). This difference is only a few inches, but it affects where the focused distance is measured to the sensor. And it shifts a bit as the lens is focused much closer. Repeating, the focal length marked on the lens is specified for when focus at infinity, and focal length is longer when focused closer. But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
When unpolarized light is reflected from a transparent material such as glass or water, the reflected light is partially polarized. Or when sunlight is ...
Hyperfocal distance calculator
This front node is often a point inside the lens, perhaps crudely assumed about the middle of the lens (but it does move with zoom), but it is small and can often be ignored. Lens specifications normally instead measure field focus distance from the sensor, so you could subtract a few inches from your subject distance (to be at that node) to compute Field of View, but normally this is not significant except at extremely close focus and macro distances. It is more significant for macro distances. Example, the Nikon 105mm f/2.8 VR macro lens has specification "Minimum focus distance: 31.4 cm (1.03 feet), which is measured to the sensor plane at rear of the camera top. There's a small measuring symbol on top of the camera there, an O with a line through it (shown on this Nikon DSLR, or is often on the side of the pentaprism dome) to mark the sensor focal plane location. But at 1:1, a reliable chart of macro lens working distances says that 105 mm lens has a Working Distance (in front of lens) at 1:1, which is significantly less, 14.8 cm (5.8 inches), which differs by 16.6 mm due to the length of the lens and thickness of the camera body. SO NOTE: the terms Focal Length and lens focus distance are measured to the sensor plane, to that mark just mentioned. But Field of View and Depth of Field are computed to a node inside or near the lens. However, the Field of View calculator and the Depth of Field calculators instead are designed around the Thin Lens Model, and are measured to a node point inside a "Normal" lens, perhaps near its middle. So calculated distances are measured to the designed focal nodes. We are rarely told where the nodes are designed, often both are inside the lens body somewhere, but some are outside. For telephoto lenses, the rear node H' (focal length from sensor plane) is instead designed just outside the front lens element, and its field H node is the focal length dimension approximately in front of the front lens surface (see an example). The designer's term "telephoto" is about this reposition of the nodal point so that the physical lens is NOT longer than its focal length. And in wide angle lenses for DSLR, the rear node H' is generally designed behind the rear lens surface, at least for SLR (lens is moved well forward to provide room to allow the larger SLR mirror to rise... 12 mm lens but 24 mm mirror, etc). This difference is only a few inches, but it affects where the focused distance is measured to the sensor. And it shifts a bit as the lens is focused much closer. Repeating, the focal length marked on the lens is specified for when focus at infinity, and focal length is longer when focused closer. But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
Also if at 1:1 magnification (equal image size on both sides of lens), then s1 = s2, saying that the working macro distance in front of the lens node (extended at 1:1) is equal to the distance to the sensor image plane (both sides at 2x focal length). This makes f/stop number be 2x, which is 2 EV light loss. Those are basics. Internal focusing macro lenses can slightly reduce this light loss, but it is still near 2 EV. The Math Sensor dimension / 2focal length = Field dimension / 2distance This diagram is the basis of Field of View and Depth of Field calculations. The half angles form geometry's Similar Triangles from the equal angles on each side of the lens. The /2 cancels out on both sides. This equation simply says that the equal angles have the same trigonometry tangent (opposite / adjacent) on each side of lens (but the /2 must be included then). The lens is simply an enlargement device (actually a size reduction) proportionally to the ratio of focal length / field distance. But be aware that focal length lengthens with closer focus distance (and is generally unknown then (focal length is 2x at 1:1 magnification, but lens internal focusing can make changes). Focusing and zooms and especially internal focusing change focal length internally. The focal length marked on the lens is at infinity focus. Focal length is generally near close enough at the closest focus of a regular lens, but calculations will be more accurate if focus is out a bit further. But macro work uses Magnification instead of subject distance. This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
Hallowell said that acceptance of the internal-wrenching hexagon drive was slow at first but that it eventually caught on quite strongly.[7] This adoption occurred first in tool and die work and later in other manufacturing fields such as defense (aircraft, tanks, submarines), civilian aircraft, automobiles, bicycles, furniture and others. Concerning the dissemination of the screws and wrenches, Hallowell said "the transition from a square head set screw [Hallowell refers here to the then-ubiquitous external-wrenching square drive] to a hexagon socket head hollow set screw[,] for which had to be developed special keys or wrenches for tightening or loosening the screw, was the cause of more profanity among the mechanics and machine manufacturers than any other single event that happened. […] I am sure that the old-timers who read this book will remember this period vividly."[8] (These transitional growing pains echo those experienced many decades later with the adoption of the Torx drive).
Back to the general ideas, of all above: This Distance to Field doesn't necessarily mean to subject or to focus point. Here it means the distance to the point where you want field size calculated (perhaps the background, computing what will show in the picture). As noted, use either meters or feet (the units all cancel out). And/or substitute width for height if appropriate. Just be consistent, and solve for the unknown. FWIW, cameras report focus distance as s, measured to the sensor surface. Lens calculations however compute with distance d, in front of the lens node (which except for telephoto lenses, is normally inside the lens body). The Thin Lens Equations use the distance d in front of the lens node, but the lens specifications are "focused distance" (marked s in the diagram) which is to the sensor plane. Working Distance = d = S1 (distance in front of lens) Focal Length = f = S2 (distance behind lens) Focus Distance = d + f (subject distance to the sensor plane) The Thin Lens Model simplifies, and is practical and adequate for most computing, even if this model has one glass element and one central node point. Camera lenses have multiple glass elements, and are "thick lenses", much more complex, and have two node points, often called H for the field view side node, and H' for the sensor view side node. These two nodes might be designed a few inches apart, but they necessarily still see the same angle. The actual node position normally only matters to us for close macro distances, or perhaps in efforts to correct panoramic parallax. Sensor focal plane marking ϴ This front node is often a point inside the lens, perhaps crudely assumed about the middle of the lens (but it does move with zoom), but it is small and can often be ignored. Lens specifications normally instead measure field focus distance from the sensor, so you could subtract a few inches from your subject distance (to be at that node) to compute Field of View, but normally this is not significant except at extremely close focus and macro distances. It is more significant for macro distances. Example, the Nikon 105mm f/2.8 VR macro lens has specification "Minimum focus distance: 31.4 cm (1.03 feet), which is measured to the sensor plane at rear of the camera top. There's a small measuring symbol on top of the camera there, an O with a line through it (shown on this Nikon DSLR, or is often on the side of the pentaprism dome) to mark the sensor focal plane location. But at 1:1, a reliable chart of macro lens working distances says that 105 mm lens has a Working Distance (in front of lens) at 1:1, which is significantly less, 14.8 cm (5.8 inches), which differs by 16.6 mm due to the length of the lens and thickness of the camera body. SO NOTE: the terms Focal Length and lens focus distance are measured to the sensor plane, to that mark just mentioned. But Field of View and Depth of Field are computed to a node inside or near the lens. However, the Field of View calculator and the Depth of Field calculators instead are designed around the Thin Lens Model, and are measured to a node point inside a "Normal" lens, perhaps near its middle. So calculated distances are measured to the designed focal nodes. We are rarely told where the nodes are designed, often both are inside the lens body somewhere, but some are outside. For telephoto lenses, the rear node H' (focal length from sensor plane) is instead designed just outside the front lens element, and its field H node is the focal length dimension approximately in front of the front lens surface (see an example). The designer's term "telephoto" is about this reposition of the nodal point so that the physical lens is NOT longer than its focal length. And in wide angle lenses for DSLR, the rear node H' is generally designed behind the rear lens surface, at least for SLR (lens is moved well forward to provide room to allow the larger SLR mirror to rise... 12 mm lens but 24 mm mirror, etc). This difference is only a few inches, but it affects where the focused distance is measured to the sensor. And it shifts a bit as the lens is focused much closer. Repeating, the focal length marked on the lens is specified for when focus at infinity, and focal length is longer when focused closer. But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
Hex keys are measured across-flats (AF), which is the distance between two opposite (parallel) sides of the hexagon.[15]
In his autobiography, the founder of the Standard Pressed Steel Company (SPS; now SPS Technologies, Inc.), Howard T. Hallowell Sr. presents a version of events[4] in which SPS developed a hex socket drive in-house, independently of Allen, circa 1911. From this came the Unbrako line of products. This account from Hallowell does not mention the Allen patent of 1910 nor the Allen safety set screw product line. Hallowell does describe, however, the same inspiration also mentioned in connection with Allen for a wave of adoption of the hex socket head, beginning with set screws and followed by cap screws. This was an industrial safety campaign, part of the larger Progressive Movement, to get headless set screws onto the pulleys and shafts of the line shafting that was ubiquitous in factories of the day. The headless set screws would be less likely to catch the clothing of workers and pull them into injurious contact with the running shaft.
There are approximations in calculations. The math is precise, but the data is less so. The required Focal length and Sensor Size are rounded specifications, losing a bit of precision. This little difference at the small sensor gets magnified in the field and scene. However, the results certainly are close enough to be very useful in any practical case. My experience is that the field is fairly accurate (at distances of at least a meter or so), assuming you actually know your parameters. Some problems are: You absolutely must know the actual correct sensor size in mm. Or the FOV calculator here can make a reasonable approximation of sensor size from the accurate Crop Factor. If not accurate, the field of view calculation will not be accurate. If you're guessing, your results will likely be troubled. Please see this summary of Issues determining Sensor Size which might help. You must know the actual correct lens focal length in mm. Zoom lens focal length is different at each and every zoom position. The image EXIF data may show focal length (but it is rounded in some degree). And of course just guessing about the field distance may be an approximation, or may not be at all accurate. Field of View calculators do NOT work for macro distances. Macro uses reproduction ration, like 1:1. Thin Lens Equation The Marked focal length of any lens is a rounded nominal number, like 50 or 60 mm. The actual can be a few percent different. Furthermore, the Marked focal length is only applicable to focus at infinity. Focal length normally increases when lens is extended forward to focus closer. Lens specs normally indicate this internal extension at closest focus distance. But internal focusing lenses can do internal tricks with focal length (some zooms and macro lenses can be shorter when up close, instead of longer). But generally speaking, focal length becomes a little longer at very close distances (2x longer at 1:1), so field of view could be a little smaller, but should be insignificant as long as magnification is greater than 0.1x, which in regular lenses is normally near their Minimum focus distance. But this calculation does not include macro distances. We are only seeking a ballpark FOV number anyway, we adjust small differences with our subject framing or cropping, but vague guesses about your distance and sensor size or focal length don't help FOV accuracy. And a fisheye lens is a different animal, wider view than this formula predicts. A regular lens is rectilinear, meaning it shows straight lines as straight lines, not curved. A fisheye is rather unconcerned about this distortion, and can show a wider view, poorly purists might say, but very wide, and very possibly interesting. Focal Length varies with zoom, and the Exif data with the image should report focal length (in coarse zoom steps, as best it can). Actual focal length could be determined by the Magnification (Wikipedia) and distance. The distance from the front nodal point to the object in the subject plane (s1), and the distance from the rear nodal point to the image plane (s2) (when focused) are related by this Thin Lens equation (Wikipedia), which the diagram and formulas below simplify. If OK with a little geometry and algebra, you can see the derivation of this classic Thin Lens Equation at the Khan Academy. In this equation, we can see that if the subject at s1 is at infinity, then 1/s1 is zero, so then s2 = f. This is the marked focal length that applies when focused at infinity. What camera lenses call the focused distance is s = s1 + s2, from subject to the sensor plane. Also if at 1:1 magnification (equal image size on both sides of lens), then s1 = s2, saying that the working macro distance in front of the lens node (extended at 1:1) is equal to the distance to the sensor image plane (both sides at 2x focal length). This makes f/stop number be 2x, which is 2 EV light loss. Those are basics. Internal focusing macro lenses can slightly reduce this light loss, but it is still near 2 EV. The Math Sensor dimension / 2focal length = Field dimension / 2distance This diagram is the basis of Field of View and Depth of Field calculations. The half angles form geometry's Similar Triangles from the equal angles on each side of the lens. The /2 cancels out on both sides. This equation simply says that the equal angles have the same trigonometry tangent (opposite / adjacent) on each side of lens (but the /2 must be included then). The lens is simply an enlargement device (actually a size reduction) proportionally to the ratio of focal length / field distance. But be aware that focal length lengthens with closer focus distance (and is generally unknown then (focal length is 2x at 1:1 magnification, but lens internal focusing can make changes). Focusing and zooms and especially internal focusing change focal length internally. The focal length marked on the lens is at infinity focus. Focal length is generally near close enough at the closest focus of a regular lens, but calculations will be more accurate if focus is out a bit further. But macro work uses Magnification instead of subject distance. This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
FOVtofocal length calculator
Hex keys are formed from a single piece of hard hexagonal steel rod, having blunt ends that fit snugly into similarly shaped screw sockets. The rods are bent to 90º, forming two arms of unequal length resembling an "L". The tool is usually held and twisted by its long arm, creating a relatively large torque at the tip of the short arm; it can also be held by its short arm to access screws in difficult-to-reach locations and to turn screws faster at the expense of torque.[1]
The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
This looks simple because it is (but correct sensor size and focal length are required). Twice the focal length is half the field, or twice the distance is twice the field dimension. And assuming use of a proper lens designed for the sensor, twice the sensor dimension is twice the field, which is why a smaller "cropped" sensor sees a smaller field unless compensated with a shorter lens. These ratios above are just the trig tangent (opposite over adjacent), necessarily equal for the equal angles, but using the ratios is simpler math for the field dimensions. But computing the angle of view requires trigonometry, for dimensions of Width, Height, or Diagonal angles of view. The 2's do NOT cancel out for this trig tangent. Field angle of view = 2 x arctan ((sensor dimension (mm) / 2) / focal length (mm)) 2 × arctan( Sensor Width mm 2 × Focal Length mm ) = Degrees
Focal Length varies with zoom, and the Exif data with the image should report focal length (in coarse zoom steps, as best it can). Actual focal length could be determined by the Magnification (Wikipedia) and distance. The distance from the front nodal point to the object in the subject plane (s1), and the distance from the rear nodal point to the image plane (s2) (when focused) are related by this Thin Lens equation (Wikipedia), which the diagram and formulas below simplify. If OK with a little geometry and algebra, you can see the derivation of this classic Thin Lens Equation at the Khan Academy. In this equation, we can see that if the subject at s1 is at infinity, then 1/s1 is zero, so then s2 = f. This is the marked focal length that applies when focused at infinity. What camera lenses call the focused distance is s = s1 + s2, from subject to the sensor plane. Also if at 1:1 magnification (equal image size on both sides of lens), then s1 = s2, saying that the working macro distance in front of the lens node (extended at 1:1) is equal to the distance to the sensor image plane (both sides at 2x focal length). This makes f/stop number be 2x, which is 2 EV light loss. Those are basics. Internal focusing macro lenses can slightly reduce this light loss, but it is still near 2 EV. The Math Sensor dimension / 2focal length = Field dimension / 2distance This diagram is the basis of Field of View and Depth of Field calculations. The half angles form geometry's Similar Triangles from the equal angles on each side of the lens. The /2 cancels out on both sides. This equation simply says that the equal angles have the same trigonometry tangent (opposite / adjacent) on each side of lens (but the /2 must be included then). The lens is simply an enlargement device (actually a size reduction) proportionally to the ratio of focal length / field distance. But be aware that focal length lengthens with closer focus distance (and is generally unknown then (focal length is 2x at 1:1 magnification, but lens internal focusing can make changes). Focusing and zooms and especially internal focusing change focal length internally. The focal length marked on the lens is at infinity focus. Focal length is generally near close enough at the closest focus of a regular lens, but calculations will be more accurate if focus is out a bit further. But macro work uses Magnification instead of subject distance. This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
by Q Wei · 2014 · Cited by 16 — For algorithmic convenience, each light ray is traced in the reverse direction: it originates from the retina and is propagated through the vitreous humour, the ...
field ofview中文
Field angle of view = 2 x arctan ((sensor dimension (mm) / 2) / focal length (mm)) 2 × arctan( Sensor Width mm 2 × Focal Length mm ) = Degrees
Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
* feet or meters (but both same units) Meaning, if you use Feet for Distance, then the Field Width will also be feet. Or meters if you use meters. Rearrange ratios to compute desired unknown value. The actual Field of View Calculator will be much more versatile, and can help find sensor size from crop factor, but math examples are shown here for Width. The computed Dimension can be Width, Height, or Diagonal. Sensor Width mm × Distance Focal Length mm = Field Width Field Width × Focal Length mm Sensor Width mm = Distance This looks simple because it is (but correct sensor size and focal length are required). Twice the focal length is half the field, or twice the distance is twice the field dimension. And assuming use of a proper lens designed for the sensor, twice the sensor dimension is twice the field, which is why a smaller "cropped" sensor sees a smaller field unless compensated with a shorter lens. These ratios above are just the trig tangent (opposite over adjacent), necessarily equal for the equal angles, but using the ratios is simpler math for the field dimensions. But computing the angle of view requires trigonometry, for dimensions of Width, Height, or Diagonal angles of view. The 2's do NOT cancel out for this trig tangent. Field angle of view = 2 x arctan ((sensor dimension (mm) / 2) / focal length (mm)) 2 × arctan( Sensor Width mm 2 × Focal Length mm ) = Degrees
SO NOTE: the terms Focal Length and lens focus distance are measured to the sensor plane, to that mark just mentioned. But Field of View and Depth of Field are computed to a node inside or near the lens. However, the Field of View calculator and the Depth of Field calculators instead are designed around the Thin Lens Model, and are measured to a node point inside a "Normal" lens, perhaps near its middle. So calculated distances are measured to the designed focal nodes. We are rarely told where the nodes are designed, often both are inside the lens body somewhere, but some are outside. For telephoto lenses, the rear node H' (focal length from sensor plane) is instead designed just outside the front lens element, and its field H node is the focal length dimension approximately in front of the front lens surface (see an example). The designer's term "telephoto" is about this reposition of the nodal point so that the physical lens is NOT longer than its focal length. And in wide angle lenses for DSLR, the rear node H' is generally designed behind the rear lens surface, at least for SLR (lens is moved well forward to provide room to allow the larger SLR mirror to rise... 12 mm lens but 24 mm mirror, etc). This difference is only a few inches, but it affects where the focused distance is measured to the sensor. And it shifts a bit as the lens is focused much closer. Repeating, the focal length marked on the lens is specified for when focus at infinity, and focal length is longer when focused closer. But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
SPS at the time was a prominent maker of shaft hangers and collars, the latter of which were put in place with set screws. In pursuit of headless set screws with a better drive than a straight slot, Hallowell said, SPS had sourced set screws of square-socket drive from Britain, but they were very expensive.[5] (This was only 2 years after Robertson's Canadian patent.) This cost problem drove SPS to purchase its first screw machine and make its screws in-house, which led to SPS's foray into fastener sales (for which it later became well known within the metalworking industries). Hallowell said "[for] a while we experimented with a screw containing a square hole like the British screw but soon found these would not be acceptable in this country [the U.S.]. Then we decided to incorporate a hexagon socket into the screw […]."[6] Hallowell does not elaborate on why SPS found that the square hole "would not be acceptable in this country", but it seems likely that it would have to have involved licensing Robertson's patent, which would have defeated SPS's purpose of driving down its cost for internal-wrenching screws (and may have been unavailable at any price, as explained at "List of screw drives > Robertson"). The story, if any, of whether SPS's methods required licensing of Allen's 1910 patent is not addressed by Hallowell's memoir. The book does not mention which method—cold forming or linear broaching—was used by SPS in these earliest years. If the latter was used, then Allen's patent would not have been relevant.
Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used.
There are Other possible arrangements. But this next one must use Field dimension and Height converted to mm (304.8 mm per foot), because each ratio must be a dimensionless number. Magnification = Distance to Object (mm) Focal Length (mm) = Real Object height (mm) Object height on sensor (mm) This is magnification on the sensor or film. The image must still be enlarged for viewing.1:1 macro reproduction at 1× is when these two top and bottom values are equal.Distant object size is reduced greatly, like perhaps maybe magnification of 0.001x or less.
Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
Polarized: Directed by Shamim Sarif. With Holly Deveaux, Maxine Denis, Hesham Hammoud, Abraham Asto. Lisa, an aspiring songwriter, whose farming family has ...
For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
Item details · Highlights · Designed by UsefulComponents. Materials: Optical PVC. This is one item of new fresnel magnifier available in packs of 1, 5, or 10.
Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
* feet or meters (but both same units) There are Other possible arrangements. But this next one must use Field dimension and Height converted to mm (304.8 mm per foot), because each ratio must be a dimensionless number. Magnification = Distance to Object (mm) Focal Length (mm) = Real Object height (mm) Object height on sensor (mm) This is magnification on the sensor or film. The image must still be enlarged for viewing.1:1 macro reproduction at 1× is when these two top and bottom values are equal.Distant object size is reduced greatly, like perhaps maybe magnification of 0.001x or less.
Field Width × Focal Length mm Sensor Width mm = Distance This looks simple because it is (but correct sensor size and focal length are required). Twice the focal length is half the field, or twice the distance is twice the field dimension. And assuming use of a proper lens designed for the sensor, twice the sensor dimension is twice the field, which is why a smaller "cropped" sensor sees a smaller field unless compensated with a shorter lens. These ratios above are just the trig tangent (opposite over adjacent), necessarily equal for the equal angles, but using the ratios is simpler math for the field dimensions. But computing the angle of view requires trigonometry, for dimensions of Width, Height, or Diagonal angles of view. The 2's do NOT cancel out for this trig tangent. Field angle of view = 2 x arctan ((sensor dimension (mm) / 2) / focal length (mm)) 2 × arctan( Sensor Width mm 2 × Focal Length mm ) = Degrees
Thin Lens Equation The Marked focal length of any lens is a rounded nominal number, like 50 or 60 mm. The actual can be a few percent different. Furthermore, the Marked focal length is only applicable to focus at infinity. Focal length normally increases when lens is extended forward to focus closer. Lens specs normally indicate this internal extension at closest focus distance. But internal focusing lenses can do internal tricks with focal length (some zooms and macro lenses can be shorter when up close, instead of longer). But generally speaking, focal length becomes a little longer at very close distances (2x longer at 1:1), so field of view could be a little smaller, but should be insignificant as long as magnification is greater than 0.1x, which in regular lenses is normally near their Minimum focus distance. But this calculation does not include macro distances. We are only seeking a ballpark FOV number anyway, we adjust small differences with our subject framing or cropping, but vague guesses about your distance and sensor size or focal length don't help FOV accuracy. And a fisheye lens is a different animal, wider view than this formula predicts. A regular lens is rectilinear, meaning it shows straight lines as straight lines, not curved. A fisheye is rather unconcerned about this distortion, and can show a wider view, poorly purists might say, but very wide, and very possibly interesting. Focal Length varies with zoom, and the Exif data with the image should report focal length (in coarse zoom steps, as best it can). Actual focal length could be determined by the Magnification (Wikipedia) and distance. The distance from the front nodal point to the object in the subject plane (s1), and the distance from the rear nodal point to the image plane (s2) (when focused) are related by this Thin Lens equation (Wikipedia), which the diagram and formulas below simplify. If OK with a little geometry and algebra, you can see the derivation of this classic Thin Lens Equation at the Khan Academy. In this equation, we can see that if the subject at s1 is at infinity, then 1/s1 is zero, so then s2 = f. This is the marked focal length that applies when focused at infinity. What camera lenses call the focused distance is s = s1 + s2, from subject to the sensor plane. Also if at 1:1 magnification (equal image size on both sides of lens), then s1 = s2, saying that the working macro distance in front of the lens node (extended at 1:1) is equal to the distance to the sensor image plane (both sides at 2x focal length). This makes f/stop number be 2x, which is 2 EV light loss. Those are basics. Internal focusing macro lenses can slightly reduce this light loss, but it is still near 2 EV. The Math Sensor dimension / 2focal length = Field dimension / 2distance This diagram is the basis of Field of View and Depth of Field calculations. The half angles form geometry's Similar Triangles from the equal angles on each side of the lens. The /2 cancels out on both sides. This equation simply says that the equal angles have the same trigonometry tangent (opposite / adjacent) on each side of lens (but the /2 must be included then). The lens is simply an enlargement device (actually a size reduction) proportionally to the ratio of focal length / field distance. But be aware that focal length lengthens with closer focus distance (and is generally unknown then (focal length is 2x at 1:1 magnification, but lens internal focusing can make changes). Focusing and zooms and especially internal focusing change focal length internally. The focal length marked on the lens is at infinity focus. Focal length is generally near close enough at the closest focus of a regular lens, but calculations will be more accurate if focus is out a bit further. But macro work uses Magnification instead of subject distance. This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
Standard metric sizes are defined in ISO 2936:2014 "Assembly tools for screws and nuts—Hexagon socket screw keys",[16] also known as DIN 911.[17]
This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
The Marked focal length of any lens is a rounded nominal number, like 50 or 60 mm. The actual can be a few percent different. Furthermore, the Marked focal length is only applicable to focus at infinity. Focal length normally increases when lens is extended forward to focus closer. Lens specs normally indicate this internal extension at closest focus distance. But internal focusing lenses can do internal tricks with focal length (some zooms and macro lenses can be shorter when up close, instead of longer). But generally speaking, focal length becomes a little longer at very close distances (2x longer at 1:1), so field of view could be a little smaller, but should be insignificant as long as magnification is greater than 0.1x, which in regular lenses is normally near their Minimum focus distance. But this calculation does not include macro distances. We are only seeking a ballpark FOV number anyway, we adjust small differences with our subject framing or cropping, but vague guesses about your distance and sensor size or focal length don't help FOV accuracy. And a fisheye lens is a different animal, wider view than this formula predicts. A regular lens is rectilinear, meaning it shows straight lines as straight lines, not curved. A fisheye is rather unconcerned about this distortion, and can show a wider view, poorly purists might say, but very wide, and very possibly interesting.
Hex key sizes in the U.S. are defined in ANSI/ASME standard B18.3-1998 "Socket Cap, Shoulder, and Set Screws (Inch Series)".
Rearrange this ratio to compute desired unknown value. Examples: Distance to Object * = Real Object height * × Focal Length (mm) Object height on sensor (mm) Real Object height * = Distance to Object * × Object height on sensor (mm) Focal Length (mm) * feet or meters (but both same units) There are Other possible arrangements. But this next one must use Field dimension and Height converted to mm (304.8 mm per foot), because each ratio must be a dimensionless number. Magnification = Distance to Object (mm) Focal Length (mm) = Real Object height (mm) Object height on sensor (mm) This is magnification on the sensor or film. The image must still be enlarged for viewing.1:1 macro reproduction at 1× is when these two top and bottom values are equal.Distant object size is reduced greatly, like perhaps maybe magnification of 0.001x or less.
The idea of a hex socket screw drive was probably conceived as early as the 1860s to the 1890s, but such screws were probably not manufactured until around 1910. Rybczynski (2000) describes a flurry of patents for alternative drive types in the 1860s to the 1890s in the U.S.,[2] which are confirmed to include internal-wrenching square and triangle types (that is, square and triangular sockets) (U.S. patent 161,390), but he explains that these were patented but not manufactured because of the difficulties and expense of doing so at the time.
Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
The term "hex-head" is sometimes used to refer to this type of drive, but this use is not consistent with its more conventional use referring to external-wrenching hexagons.
Cross hair reticle pattern with an aluminum contrast on a prism used for sight detection ... This field is for validation purposes and should be left unchanged.
This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
Viewangle
Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
Hex keys are designated with a socket size and are manufactured with tight tolerances. As such, they are commonly sold in kits that include a variety of sizes. Key length typically increases with size but not necessarily proportionally so. Variants on this design have the short end inserted in a transverse handle, which may contain multiple keys of varying sizes that can be folded into the handle when not in use.
Substituting size of an Object in the field, instead of overall Field size. Using these two steps may be convenient: Object height on sensor (mm) = Sensor height (mm) × Object height (pixels) Sensor height (pixels) Object height on sensor (mm)Focal length (mm) = Real Object size *Distance to Object * Rearrange this ratio to compute desired unknown value. Examples: Distance to Object * = Real Object height * × Focal Length (mm) Object height on sensor (mm) Real Object height * = Distance to Object * × Object height on sensor (mm) Focal Length (mm) * feet or meters (but both same units) There are Other possible arrangements. But this next one must use Field dimension and Height converted to mm (304.8 mm per foot), because each ratio must be a dimensionless number. Magnification = Distance to Object (mm) Focal Length (mm) = Real Object height (mm) Object height on sensor (mm) This is magnification on the sensor or film. The image must still be enlarged for viewing.1:1 macro reproduction at 1× is when these two top and bottom values are equal.Distant object size is reduced greatly, like perhaps maybe magnification of 0.001x or less. Back to the general ideas, of all above: This Distance to Field doesn't necessarily mean to subject or to focus point. Here it means the distance to the point where you want field size calculated (perhaps the background, computing what will show in the picture). As noted, use either meters or feet (the units all cancel out). And/or substitute width for height if appropriate. Just be consistent, and solve for the unknown. FWIW, cameras report focus distance as s, measured to the sensor surface. Lens calculations however compute with distance d, in front of the lens node (which except for telephoto lenses, is normally inside the lens body). The Thin Lens Equations use the distance d in front of the lens node, but the lens specifications are "focused distance" (marked s in the diagram) which is to the sensor plane. Working Distance = d = S1 (distance in front of lens) Focal Length = f = S2 (distance behind lens) Focus Distance = d + f (subject distance to the sensor plane) The Thin Lens Model simplifies, and is practical and adequate for most computing, even if this model has one glass element and one central node point. Camera lenses have multiple glass elements, and are "thick lenses", much more complex, and have two node points, often called H for the field view side node, and H' for the sensor view side node. These two nodes might be designed a few inches apart, but they necessarily still see the same angle. The actual node position normally only matters to us for close macro distances, or perhaps in efforts to correct panoramic parallax. Sensor focal plane marking ϴ This front node is often a point inside the lens, perhaps crudely assumed about the middle of the lens (but it does move with zoom), but it is small and can often be ignored. Lens specifications normally instead measure field focus distance from the sensor, so you could subtract a few inches from your subject distance (to be at that node) to compute Field of View, but normally this is not significant except at extremely close focus and macro distances. It is more significant for macro distances. Example, the Nikon 105mm f/2.8 VR macro lens has specification "Minimum focus distance: 31.4 cm (1.03 feet), which is measured to the sensor plane at rear of the camera top. There's a small measuring symbol on top of the camera there, an O with a line through it (shown on this Nikon DSLR, or is often on the side of the pentaprism dome) to mark the sensor focal plane location. But at 1:1, a reliable chart of macro lens working distances says that 105 mm lens has a Working Distance (in front of lens) at 1:1, which is significantly less, 14.8 cm (5.8 inches), which differs by 16.6 mm due to the length of the lens and thickness of the camera body. SO NOTE: the terms Focal Length and lens focus distance are measured to the sensor plane, to that mark just mentioned. But Field of View and Depth of Field are computed to a node inside or near the lens. However, the Field of View calculator and the Depth of Field calculators instead are designed around the Thin Lens Model, and are measured to a node point inside a "Normal" lens, perhaps near its middle. So calculated distances are measured to the designed focal nodes. We are rarely told where the nodes are designed, often both are inside the lens body somewhere, but some are outside. For telephoto lenses, the rear node H' (focal length from sensor plane) is instead designed just outside the front lens element, and its field H node is the focal length dimension approximately in front of the front lens surface (see an example). The designer's term "telephoto" is about this reposition of the nodal point so that the physical lens is NOT longer than its focal length. And in wide angle lenses for DSLR, the rear node H' is generally designed behind the rear lens surface, at least for SLR (lens is moved well forward to provide room to allow the larger SLR mirror to rise... 12 mm lens but 24 mm mirror, etc). This difference is only a few inches, but it affects where the focused distance is measured to the sensor. And it shifts a bit as the lens is focused much closer. Repeating, the focal length marked on the lens is specified for when focus at infinity, and focal length is longer when focused closer. But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here Copyright © 2018-2024 by Wayne Fulton - All rights are reserved.
Sensor focal plane marking ϴ This front node is often a point inside the lens, perhaps crudely assumed about the middle of the lens (but it does move with zoom), but it is small and can often be ignored. Lens specifications normally instead measure field focus distance from the sensor, so you could subtract a few inches from your subject distance (to be at that node) to compute Field of View, but normally this is not significant except at extremely close focus and macro distances. It is more significant for macro distances. Example, the Nikon 105mm f/2.8 VR macro lens has specification "Minimum focus distance: 31.4 cm (1.03 feet), which is measured to the sensor plane at rear of the camera top. There's a small measuring symbol on top of the camera there, an O with a line through it (shown on this Nikon DSLR, or is often on the side of the pentaprism dome) to mark the sensor focal plane location. But at 1:1, a reliable chart of macro lens working distances says that 105 mm lens has a Working Distance (in front of lens) at 1:1, which is significantly less, 14.8 cm (5.8 inches), which differs by 16.6 mm due to the length of the lens and thickness of the camera body. SO NOTE: the terms Focal Length and lens focus distance are measured to the sensor plane, to that mark just mentioned. But Field of View and Depth of Field are computed to a node inside or near the lens. However, the Field of View calculator and the Depth of Field calculators instead are designed around the Thin Lens Model, and are measured to a node point inside a "Normal" lens, perhaps near its middle. So calculated distances are measured to the designed focal nodes. We are rarely told where the nodes are designed, often both are inside the lens body somewhere, but some are outside. For telephoto lenses, the rear node H' (focal length from sensor plane) is instead designed just outside the front lens element, and its field H node is the focal length dimension approximately in front of the front lens surface (see an example). The designer's term "telephoto" is about this reposition of the nodal point so that the physical lens is NOT longer than its focal length. And in wide angle lenses for DSLR, the rear node H' is generally designed behind the rear lens surface, at least for SLR (lens is moved well forward to provide room to allow the larger SLR mirror to rise... 12 mm lens but 24 mm mirror, etc). This difference is only a few inches, but it affects where the focused distance is measured to the sensor. And it shifts a bit as the lens is focused much closer. Repeating, the focal length marked on the lens is specified for when focus at infinity, and focal length is longer when focused closer. But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
Discover the latest in eyewear innovation with Wolt's foldable sunglasses. Enjoy spring savings with our Spring Sale, and explore our Eclipse, Babylon, ...
The Thin Lens Equations use the distance d in front of the lens node, but the lens specifications are "focused distance" (marked s in the diagram) which is to the sensor plane. Working Distance = d = S1 (distance in front of lens) Focal Length = f = S2 (distance behind lens) Focus Distance = d + f (subject distance to the sensor plane) The Thin Lens Model simplifies, and is practical and adequate for most computing, even if this model has one glass element and one central node point. Camera lenses have multiple glass elements, and are "thick lenses", much more complex, and have two node points, often called H for the field view side node, and H' for the sensor view side node. These two nodes might be designed a few inches apart, but they necessarily still see the same angle. The actual node position normally only matters to us for close macro distances, or perhaps in efforts to correct panoramic parallax. Sensor focal plane marking ϴ This front node is often a point inside the lens, perhaps crudely assumed about the middle of the lens (but it does move with zoom), but it is small and can often be ignored. Lens specifications normally instead measure field focus distance from the sensor, so you could subtract a few inches from your subject distance (to be at that node) to compute Field of View, but normally this is not significant except at extremely close focus and macro distances. It is more significant for macro distances. Example, the Nikon 105mm f/2.8 VR macro lens has specification "Minimum focus distance: 31.4 cm (1.03 feet), which is measured to the sensor plane at rear of the camera top. There's a small measuring symbol on top of the camera there, an O with a line through it (shown on this Nikon DSLR, or is often on the side of the pentaprism dome) to mark the sensor focal plane location. But at 1:1, a reliable chart of macro lens working distances says that 105 mm lens has a Working Distance (in front of lens) at 1:1, which is significantly less, 14.8 cm (5.8 inches), which differs by 16.6 mm due to the length of the lens and thickness of the camera body. SO NOTE: the terms Focal Length and lens focus distance are measured to the sensor plane, to that mark just mentioned. But Field of View and Depth of Field are computed to a node inside or near the lens. However, the Field of View calculator and the Depth of Field calculators instead are designed around the Thin Lens Model, and are measured to a node point inside a "Normal" lens, perhaps near its middle. So calculated distances are measured to the designed focal nodes. We are rarely told where the nodes are designed, often both are inside the lens body somewhere, but some are outside. For telephoto lenses, the rear node H' (focal length from sensor plane) is instead designed just outside the front lens element, and its field H node is the focal length dimension approximately in front of the front lens surface (see an example). The designer's term "telephoto" is about this reposition of the nodal point so that the physical lens is NOT longer than its focal length. And in wide angle lenses for DSLR, the rear node H' is generally designed behind the rear lens surface, at least for SLR (lens is moved well forward to provide room to allow the larger SLR mirror to rise... 12 mm lens but 24 mm mirror, etc). This difference is only a few inches, but it affects where the focused distance is measured to the sensor. And it shifts a bit as the lens is focused much closer. Repeating, the focal length marked on the lens is specified for when focus at infinity, and focal length is longer when focused closer. But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
This diagram is the basis of Field of View and Depth of Field calculations. The half angles form geometry's Similar Triangles from the equal angles on each side of the lens. The /2 cancels out on both sides. This equation simply says that the equal angles have the same trigonometry tangent (opposite / adjacent) on each side of lens (but the /2 must be included then). The lens is simply an enlargement device (actually a size reduction) proportionally to the ratio of focal length / field distance. But be aware that focal length lengthens with closer focus distance (and is generally unknown then (focal length is 2x at 1:1 magnification, but lens internal focusing can make changes). Focusing and zooms and especially internal focusing change focal length internally. The focal length marked on the lens is at infinity focus. Focal length is generally near close enough at the closest focus of a regular lens, but calculations will be more accurate if focus is out a bit further. But macro work uses Magnification instead of subject distance. This Thin Lens Model simplifies, as if it were a simple one glass element (like a handheld magnifying lens) with only the one central node point. Multi-element âThickâ camera lenses have two nodes for each side of lens (see the fstop page). But camera lenses normally have several (to many) glass lens elements (a thick lens), designed to correct optical aberrations and distortions, and also to zoom. The Thin Lens Model does still work well for practical computing purposes, at least at distances of at least maybe a meter or two, making a few mm dimension to the node be less important (a bit more description below). The focal length is measured from the sensor plane to the lens node H' (often inside the lens, but not always). Technically, the focal length Marked on the lens applies when focused at infinity, but it will be a bit longer when focused closer. Lens equations use distance d in front of the field node, however note that specifications of lens focus-distance (like minimum closest focus) specify s to the sensor, the sum of d and f. The standard camera magnification geometry uses the standard ratios of the similar triangles shown above. The field dimension angle in front of this lens node is the same angle (opposite angles) as the sensor dimension angle behind the lens. The ratio of distances on each side of the lens are the same as the ratio of the size dimensions on each side of the lens. These ratios (as shown first below) are simply the trigonometry tangents of the same angle on each side of the lens (tangent is opposite side over adjacent side). In this equation, rearrangement will compute any one term from the other three. But one mm of error in focal length or sensor size is magnified in the field, so input accuracy is critical. The math is simple, but the difficult part of computing this will be to first accurately determine the correct sensor dimensions, and/or the zoom lens focal length (small errors get magnified at the larger distant field). Trigonometry does also work for this, but we don't need trig except to compute the actual angles of Field of View. Because Field of View dimensions are just similar triangles (shown gray above). The three field or sensor dimensions are Height, Width, or Diagonal, each are computed individually. Using the (opposite dimension / 2) to create right angles for trig, these ratios are the trig tangent of the half angles, which is the same opposite angle on both sides of lens (the two formula ratios are necessarily equal). The /2 cancels out on both sides, and any unit conversions to feet or meters on the right side cancel out. It becomes a very simple equation. Do be consistent with units, but then there is no conversion of units needed (same ratio on both sides). Basics of lens optics in all of these equations(similar triangles on both sides of the lens)
This Distance to Field doesn't necessarily mean to subject or to focus point. Here it means the distance to the point where you want field size calculated (perhaps the background, computing what will show in the picture). As noted, use either meters or feet (the units all cancel out). And/or substitute width for height if appropriate. Just be consistent, and solve for the unknown. FWIW, cameras report focus distance as s, measured to the sensor surface. Lens calculations however compute with distance d, in front of the lens node (which except for telephoto lenses, is normally inside the lens body). The Thin Lens Equations use the distance d in front of the lens node, but the lens specifications are "focused distance" (marked s in the diagram) which is to the sensor plane. Working Distance = d = S1 (distance in front of lens) Focal Length = f = S2 (distance behind lens) Focus Distance = d + f (subject distance to the sensor plane) The Thin Lens Model simplifies, and is practical and adequate for most computing, even if this model has one glass element and one central node point. Camera lenses have multiple glass elements, and are "thick lenses", much more complex, and have two node points, often called H for the field view side node, and H' for the sensor view side node. These two nodes might be designed a few inches apart, but they necessarily still see the same angle. The actual node position normally only matters to us for close macro distances, or perhaps in efforts to correct panoramic parallax. Sensor focal plane marking ϴ This front node is often a point inside the lens, perhaps crudely assumed about the middle of the lens (but it does move with zoom), but it is small and can often be ignored. Lens specifications normally instead measure field focus distance from the sensor, so you could subtract a few inches from your subject distance (to be at that node) to compute Field of View, but normally this is not significant except at extremely close focus and macro distances. It is more significant for macro distances. Example, the Nikon 105mm f/2.8 VR macro lens has specification "Minimum focus distance: 31.4 cm (1.03 feet), which is measured to the sensor plane at rear of the camera top. There's a small measuring symbol on top of the camera there, an O with a line through it (shown on this Nikon DSLR, or is often on the side of the pentaprism dome) to mark the sensor focal plane location. But at 1:1, a reliable chart of macro lens working distances says that 105 mm lens has a Working Distance (in front of lens) at 1:1, which is significantly less, 14.8 cm (5.8 inches), which differs by 16.6 mm due to the length of the lens and thickness of the camera body. SO NOTE: the terms Focal Length and lens focus distance are measured to the sensor plane, to that mark just mentioned. But Field of View and Depth of Field are computed to a node inside or near the lens. However, the Field of View calculator and the Depth of Field calculators instead are designed around the Thin Lens Model, and are measured to a node point inside a "Normal" lens, perhaps near its middle. So calculated distances are measured to the designed focal nodes. We are rarely told where the nodes are designed, often both are inside the lens body somewhere, but some are outside. For telephoto lenses, the rear node H' (focal length from sensor plane) is instead designed just outside the front lens element, and its field H node is the focal length dimension approximately in front of the front lens surface (see an example). The designer's term "telephoto" is about this reposition of the nodal point so that the physical lens is NOT longer than its focal length. And in wide angle lenses for DSLR, the rear node H' is generally designed behind the rear lens surface, at least for SLR (lens is moved well forward to provide room to allow the larger SLR mirror to rise... 12 mm lens but 24 mm mirror, etc). This difference is only a few inches, but it affects where the focused distance is measured to the sensor. And it shifts a bit as the lens is focused much closer. Repeating, the focal length marked on the lens is specified for when focus at infinity, and focal length is longer when focused closer. But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
A hex key (also, hex wrench, Allen key and Allen wrench or Inbus) is a simple driver for bolts or screws that have heads with internal hexagonal recesses (sockets).
Back to the general ideas, of all above: This Distance to Field doesn't necessarily mean to subject or to focus point. Here it means the distance to the point where you want field size calculated (perhaps the background, computing what will show in the picture). As noted, use either meters or feet (the units all cancel out). And/or substitute width for height if appropriate. Just be consistent, and solve for the unknown. FWIW, cameras report focus distance as s, measured to the sensor surface. Lens calculations however compute with distance d, in front of the lens node (which except for telephoto lenses, is normally inside the lens body). The Thin Lens Equations use the distance d in front of the lens node, but the lens specifications are "focused distance" (marked s in the diagram) which is to the sensor plane. Working Distance = d = S1 (distance in front of lens) Focal Length = f = S2 (distance behind lens) Focus Distance = d + f (subject distance to the sensor plane) The Thin Lens Model simplifies, and is practical and adequate for most computing, even if this model has one glass element and one central node point. Camera lenses have multiple glass elements, and are "thick lenses", much more complex, and have two node points, often called H for the field view side node, and H' for the sensor view side node. These two nodes might be designed a few inches apart, but they necessarily still see the same angle. The actual node position normally only matters to us for close macro distances, or perhaps in efforts to correct panoramic parallax. Sensor focal plane marking ϴ This front node is often a point inside the lens, perhaps crudely assumed about the middle of the lens (but it does move with zoom), but it is small and can often be ignored. Lens specifications normally instead measure field focus distance from the sensor, so you could subtract a few inches from your subject distance (to be at that node) to compute Field of View, but normally this is not significant except at extremely close focus and macro distances. It is more significant for macro distances. Example, the Nikon 105mm f/2.8 VR macro lens has specification "Minimum focus distance: 31.4 cm (1.03 feet), which is measured to the sensor plane at rear of the camera top. There's a small measuring symbol on top of the camera there, an O with a line through it (shown on this Nikon DSLR, or is often on the side of the pentaprism dome) to mark the sensor focal plane location. But at 1:1, a reliable chart of macro lens working distances says that 105 mm lens has a Working Distance (in front of lens) at 1:1, which is significantly less, 14.8 cm (5.8 inches), which differs by 16.6 mm due to the length of the lens and thickness of the camera body. SO NOTE: the terms Focal Length and lens focus distance are measured to the sensor plane, to that mark just mentioned. But Field of View and Depth of Field are computed to a node inside or near the lens. However, the Field of View calculator and the Depth of Field calculators instead are designed around the Thin Lens Model, and are measured to a node point inside a "Normal" lens, perhaps near its middle. So calculated distances are measured to the designed focal nodes. We are rarely told where the nodes are designed, often both are inside the lens body somewhere, but some are outside. For telephoto lenses, the rear node H' (focal length from sensor plane) is instead designed just outside the front lens element, and its field H node is the focal length dimension approximately in front of the front lens surface (see an example). The designer's term "telephoto" is about this reposition of the nodal point so that the physical lens is NOT longer than its focal length. And in wide angle lenses for DSLR, the rear node H' is generally designed behind the rear lens surface, at least for SLR (lens is moved well forward to provide room to allow the larger SLR mirror to rise... 12 mm lens but 24 mm mirror, etc). This difference is only a few inches, but it affects where the focused distance is measured to the sensor. And it shifts a bit as the lens is focused much closer. Repeating, the focal length marked on the lens is specified for when focus at infinity, and focal length is longer when focused closer. But the "Subject Distance" (S in diagram) is measured to the sensor focal plane (it is the "focus distance"), where we see a small line symbol like ϴ marked on the top of the camera (often near top LCD on right side, but some are on left side of camera). The line across the circle indicates the location of the film or sensor plane (for focus measurements). However, the Thin Lens Equation uses the working distance d in front of the lens. This is why we often see in equations: (S - f) used for d. Again, three points. Simple cameras typically do not give specifications about the sensor size in mm (the 1/xx inch number is near meaningless dimensionally). However crop factor might be determined, and can compute sensor size. The focal length is a nominal number, rounded, not precisely exact. And the marked focal length applies at infinity, and it will be a little different if focused close, so the focus distance should not be too close, at least a meter or two. Normally lenses won't focus close enough to matter much (except macro lenses). Camcorder 16:9 fits the full view circle from the lens. But 16:9 video on a 3:2 or 4:3 camera sensor (or a 4:3 image from a 16:9 camcorder) is cropped and resampled, instead of fitting the lens full view circle. The Field of View calculator handles that, always with the assumption that the maximum possible area of the sensor is always used. Some cameras make exceptions to that, unknown to me. Or if you know, you can specify the exact size of the sensor used. For Macro, computing Field size from magnification is more convenient than from focal length, since we don't really know focal length at macro extension. The math above WILL BE INACCURATE at macro distances, because the Focal Length has changed there. For example, we do know the Thin Lens Formula specifies focal length at 1:1 is extended to 2x the marked focal length at infinity. So FWIW, for the calculator Option 8 for magnification 1 (1:1) for a 50 mm lens at 2x, we could enter it as 100 mm, and compute field width for a full frame sensor as 0.11811 feet (which x12 and x25.4 is the expected 36 mm full frame width for 1:1). Subject distance becomes 0.32808 feet (both are feet if we use feet), which x12 is 3.9 inches. But this distance is measured to the Principle Point typically inside the lens somewhere, which we really don't know where that is, and it becomes very significant for macro. Which is why field of view for macro is instead computed from magnification (reproduction ratio, like 1:1). Focal length and subject distance determine Magnification, which is the ratio of size of image to size of actual subject. Or the ratio of size of sensor to the size of the remote field. We could compute for magnification here, but we likely don't know new focal length at that close magnification. Just using magnification has more significance up closer (easier for macro), which is where our knowledge of the actual focal length is weakest. We could measure the field to compute the actual magnification. However Magnification is simply: m = s2/s1. Or m = f/d. Or m = f/(S-f). Other macro ideas: Actual focal length = Sensor dimension × Working distance / Field dimension Those are all in the same units. Note that working dimension is to the lenses internal node, and NOT just to the front of the lens. Which is probably only an inch or two difference, but it becomes very significant at macro distances. Field dimension = Sensor dimension / Magnification Let's say it this way: 1:1 macro, the focal length f is same as the distance d in front of lens (each with its own node). 1:1 macro (magnification 1), the field of view is exactly the same size as the sensor. 1:2 macro (magnification 0.5), the field of view is twice the size of the sensor. 1:4 macro (magnification 0.25), the field of view is four times the size of the sensor. This is true of any focal length for any lens (or method) that can achieve the magnification. Focal length and subject distance are obviously the factors determining magnification (it is still about them), but magnification ratio is simply easier work for macro. The easiest method to determine field of view for macro is to simply put a mm ruler in the field. If a 24 mm sensor width sees 32 mm of ruler, then that is the field of view, and the magnification is 24/32 = 0.75 (this scale of magnification is 1 at 1:1, and is 0 at infinity). The definition of macro 1:1 magnification is that the focal length and subject distance are equal (distances in front of and behind the lens nodes are necessarily equal, creating 1:1 magnification). In this Thin Lens Equation, if s1 and s2 are equal, the formula is then 2/s1 = 1/f, or 2f = s1. So lens extension to 2f gives 1:1. And since f/stop number = f / diameter, then if 2f, then f/stop number is 2x too, which a double f/stop number is 2 stops change, which is the aperture loss at 1:1. We know those things, this is just why. But the point here, if f is actually 2f at 1:1 macro, the field of view changes with it. None of the FOV calculators are for macro situations (too close, magnification is instead the rule there). Field of View calculators expect subject distance to be at least a meter or so, reducing the focal length error to be insignificant. Menu of the other Photo and Flash pages here
Tamper-resistant hex screws have a protruding pin in the center of the hex recess that prevents insertion of standard hex keys; as such, they can only be fastened and removed with a special key that has a recess for the pin. A similar "center pin reject" security feature is also used on torx screws.
Hex socket screw heads are usually made by stamping the head with a die, plastically deforming the metal. Other ways to generate the hex socket include linear broaching and rotary broaching. Broaching the heads with a linear broach is essentially the metalworking analog of mortising wood with a mortising machine; a hole is drilled and then the corners are broached out. This operation often leaves little telltale curled chips still attached at the bottom of the socket. These are negligible for most applications.
P. L. Robertson of Milton, Ontario, first commercialized the square socket in 1908, having perfected and patented a suitable cold forming method, using the right material and the right die design. In 1909–1910, William G. Allen also patented a method of cold-forming screw heads around a hexagonal die (U.S. patent 960,244). Published advertisements for the "Allen safety set screw" by the Allen Manufacturing Company of Hartford, Connecticut, exist from 1910.[3]
While often used in generic terms for "hex key", the "Allen" name is a registered trademark (circa 1910) of the Allen Manufacturing Company (now Apex Tool Group) of Hartford, Connecticut; regardless, "Allen key" and "Allen wrench" are often seen as generic trademarks.
Trig functions in software programming languages (including Excel, Javascript, C, Python, etc.) use radians instead of degrees. Calculators normally offer the choice of using degrees. To convert radians to degrees, multiply radians by 180/Pi, which is 57.2958 degrees per radian. Or for degrees to radians, multiply degrees by Pi/180. Field size and focal length are linear in field of view (half of sensor dimension or twice the focal length both produce half the field dimension). But the angle is a tangent function, which is Not straight-line linear (the angle is approximately linear if angle is not more than about 10 degrees (called the Small-Angle Approximation).