Specifies the directory where MPI library files reside. This option should be used in conjunction with the -mpiinc=

option to generate the TAU MPI wrapper library.

Specifies the name of the Fortran90 compiler. Valid options are: gnu, sgi, ibm, ibm64, intel, cray, pgi, absoft, fujitsu, sun, kai, nec, hitachi, compaq, nagware, g95 and hp.

Specifies the directory where the EPILOG tracing package EPILOG is installed.This option should be used in conjunction with the -TRACE option to generate binary EPILOG traces (instead of binary TAU traces). EPILOG traces can then be used with other tools such as EXPERT. EPILOG comes with its own implementation of the MPI wrapper library and the POMP library used with Opari. Using option overrides TAU's libraries for MPI, and OpenMP.

Bestlaser optics

Specifies online compensation of performance perturbation. When this option is used, TAU computes its overhead and subtracts it from the profiles. It can be only used when profiling is chosen. This option works with MULTIPLECOUNTERS as well, but while it is relevant for removing perturbation with wallclock time, it cannot accurately account for perturbation with hardware performance counts (e.g., L1 Data cache misses). See TAU Publication [Europar04] for further information on this option.

Specifies the location of the OTF trace libraries generation package. TAU's binary traces can be converted to the OTF format using tau2otf, a tool that links with the OTF library.

Specifies the location of the installed Java root directory. TAU can profile or trace Java applications without any modifications to the source code, byte-code or the Java virtual machine. See README.JAVA on instructions on using TAU with Java 2 applications. Also the refence guide has more information on the new tau_java tool. This option should only be used for configuring TAU to use JVMTI for profiling and tracing of Java applications. It should not be used for configuring paraprof, which uses Java from the user's path.

Jet 774809 CrV Steel Long Arm SAE Hex Key 7/64″ · Product no. 774809 · SAE / Imperial key size: 7/64″ · Made of industrial, heat-treated Chrome Vanadium (CrV) ...

This option generates phase based profiles. It requires special instrumentation to mark phases in an application (I/O, computation, etc.). Phases can be static or dynamic (different phases for each loop iteration, for instance). See examples/phase/README for further information.

Specifies the directory where shmem.h resides and specifies the use of the TAU SHMEM interface.

Our optical design team is comprised of experienced and talented optical designers who specialize in creating custom optical designs for a wide range of applications.

Specifies additional user options such as -g or -I. For multiple options, the options list should be enclosed in a single quote. For example

This script is provided to rebuild all TAU configurations previously built in a different TAU source directory. Give this command the location of a previous version of tau followed by any additional configurations and it will rebuild tau with these same options.

Configurations with different compilers are given separate Makefiles automatically, however configurations with different MPI implementations are not. Use the -tag= option to distinguish between different MPIs, ie: -tag=mvapich or -tag=openmpi.

Specifies the destination directory where the header, library and binary files are copied. By default, these are copied to subdirectories /bin and /lib in the TAU root directory.

Specify location of Score-P package. Set the enviroment varible SCOREP_PROFILING_FORMAT to TAU_SNAPHOT so that Score-P will output Tau Snapsot profiles.

The configure shell script attempts to guess correct values for various system-dependent variables used during compilation (compilers and system architecture), other options need to be specified on the command line.

TAU (Tuning and Analysis Utilities) is a portable profiling and tracing toolkit for performance analysis of parallel programs written in Fortran, C++, C, Java and Python. The model that TAU uses to profile parallel, multi-threaded programs maintains performance data for each thread, context, and node in use by an application. The profiling instrumentation needed to implement the model captures data for functions, methods, basic blocks, and statement execution at these levels. All C++ language features are supported in the TAU profiling instrumentation including templates and namespaces, which is available through an API at the library or application level. The API also provides selection of profiling groups for organizing and controlling instrumentation. The instrumentation can be inserted in the source code using an automatic instrumentor tool based on the Program Database Toolkit (PDT), dynamically using DyninstAPI, at runtime in the Java virtual machine, or manually using the instrumentation API. TAU's profile visualization tool, paraprof, provides graphical displays of all the performance analysis results, in aggregate and single node/context/thread forms. The user can quickly identify sources of performance bottlenecks in the application using the graphical interface. In addition, TAU can generate event traces that can be displayed with the Vampir or Paraver trace visualization tools. This chapter discusses installation of the TAU portable profiling package.

Specifies the location of the VTF3 trace generation package. TAU's binary traces can be converted to the VTF3 format using tau2vtf, a tool that links with the VTF3 library. The VTF3 format is read by Intel trace analyzer, formerly known as vampir, a commercial trace visualization tool developed by TU. Dresden, Germany.

Specifies pthread as the thread package to be used. In the default mode, no thread package is used.

Laser opticspdf

Specifies use of hardware performance counters for profiling under IRIX using the SGI R10000 perfex counter access interface. The use of this option is deprecated in favor of the -pcl=

and -papi= options described above.

20 Results Found · FLIR; IRW-3C IR WINDOW 3IN · IRW-3C IR WINDOW 3IN · Item # FLS19251-100 · Mfr. Model # 19251-100 · Infrared inspection · SDS Document Not ...

For this reason it is recommend that you configure with every external packages that the user might be interested in using, letting them choose which packages to enable when they go to instrument or measure their application.

Specifies the use of a different MPI library. By default, TAU uses -lmpi or -lmpich as the MPI library. This option allows the user to specify another library. e.g., -mpilibrary=-lmpi_r for specifying a thread-safe MPI library.

Specifies the architecture. If the user does not specify this option, configure determines the architecture. For IBM BGL, the user should specify bgl as the architecture. For SGI, the user can specify either of sgi32, sgin32 or sgi64 for 32, n32 or 64 bit compilation modes respectively. The files are installed in the /bin and /lib directories. Cray options are xt3, craycnl or crayxmt.

Since multiple compiler/MPI libraries cannot be specified for a single configuration, each set of compiler/MPI libraries that you want to use with TAU need to be configured separately.

Specifies the tracing option and generates event traces for MPI calls and routines that are ancestors of MPI calls in the callstack. This option is useful for generating traces that are converted to the EPILOG trace format. KOJAK's Expert automatic diagnosis tool needs traces with events that call MPI routines. Do not use this option with the -TRACE option.

Report performance data for only OpenMP regions and not constructs. By default, both regions and constructs are profiled with Opari.

Laser opticsmanufacturers

Laser OpticsGun

Use this option for the use of the original Opari. Only use this option if -opari fails. OPARI

Specifies tracking memory available in the heap (as opposed to memory utilization tracking in -PROFILEMEMORY). When any function entry takes place, a sample of the memory available (headroom to grow) is taken. This data is stored as user-defined event data in profiles/traces. Please refer to the examples/headroom/README file for a full explanation of these headroom options and the C++/C/F90 API for evaluating the headroom.

The use of Opari2 source-to-source instrumentor in conjunction with TAU exposes OpenMP events for instrumentation. See examples/opari directory. OPARI

By default, TAU uses -lsma as the shmem/pshmem library. This option allows the user to specify a different shmem library.

This option generates MPI information partitioned by communicators. TAU lists upto 8 ranks in each communicator in the listing.

Image

Report performance data for only OpenMP constructs and not Regions. By default, both regions and constructs are profiled with Opari.

2010115 — We present the results of realization and study of a light beam splitting effect based on a full-optically controlled holographic ...

Sep 2, 2021 — Your choice of anti reflective coating will depend on your individual needs and preferences. If you're looking for a coating that will reduce ...

Light angle brackets with rounded ends are used for reinforcing chairs, tables, and cabinets. One part has a slotted hole. The slot allows the adjustment of ...

Specifies the location of the Python lib directory. This is the directory where *.py and *.pyc files (and config directory) are located. This option is mandatory for IBM when Python bindings are used. For other systems, this option may not be specified (but -pythoninc=

needs to be specified).

Compiler and MPI options: these control the behavior of TAU when it compiles the instrumented application. TAU provides compiler wrapper scripts, these options control which compiler TAU will wrap, These options are determinative: select only options that are compatible. For example, when configuring with MPI use a version of MPI compatible with the compiler you select.

Specifies the directory of where the epilog's included sources headers are to be found.

Specifies the name of the C compiler. Supported C compilers include cc, gcc (from GNU), pgcc (from PGI), fcc (from Fujitsu), xlc (from IBM), and KCC (from KAI/ Intel), icc and ecc (from Intel).

Same as papi, except uses threads to highlight how hardware performance counters may be used in a multi-threaded application. When it is used with PAPI, TAU should be configured with -papi=

-pthread autoinstrument Shows the use of Program Database Toolkit (PDT) for automating the insertion of TAU macros in the source code. It requires configuring TAU with the -pdt= option. The Makefile is modified to illustrate the use of a source to source translator (tau_instrumentor).

Allows the user to turn off tracking of messages (synchronous/asynchronous) in TAU's MPI wrapper interposition library. Entry and exit events for MPI routines are still tracked. Affects both profiling and tracing.

uses g++ to compile the tau_instrumentor, for example on CRAY XT5 systems use this option to build TAU any of the backend compilers.

Looking for high-quality photonics solutions and customized systems? our R&D team is equipped with years of experience and deep expertise in customizing your system.

Specifies the directory where the DynInst dynamic instrumentation package is installed. Using DynInst, a user can invoke tau_run to instrument an executable program at runtime or prior to execution by rewriting it. DyninstAPIPARA-DYN.

(See also the article on the term fluence.) For a low-gain laser amplifier, saturation fluence and energy can be calculated according to.

Laser opticsfor sale

Specifies the location of the installed PAPI (Performance Data Standard and API) root directory. PCL provides a common interface to access hardware performance counters and timers on modern microprocessors. Most modern CPUs provide on-chip hardware performance counters that can record several events such as the number of instructions issued, floating point operations performed, the number of primary and secondary data and instruction cache misses. To measure floating point instructions, set the environment variable TAU_METRICS to PAPI_FP_INS (for example). This option (by default) specifies the use of hardware performance counters for profiling (instead of time). PAPI

With this option, TAU will try to guess the location of the MPI libraries if the mpirun command is in your path. This does not always work in which case use these more detailed options:

Specifies tracking heap memory utilization for each instrumented function. When any function entry takes place, a sample of the heap memory used is taken. This data is stored as user-defined event data in profiles/traces.

IRIS USA 4" x 6" Photo Storage Craft Keeper, 2 Pack, Main Container with 16 Organization Cases for Pictures, Crafts, Scrapbooking, Stationery Storage.

magnify ... To magnify an object means to make it appear larger than it really is, by means of a special lens or mirror. ... To magnify something means to increase ...

Specifies the name of the C++ compiler. Supported C++ compilers include KCC (from KAI/Intel), CC (SGI, Sun), g++ (from GNU), FCC (from Fujitsu), xlC (from IBM), guidec++ (from KAI/Intel), cxx (Tru64) and aCC (from HP), c++ (from Apple), icpc and ecpc (from Intel) and pgCC (from PGI).

Laser opticscourse

External packages: TAU will use these when instrumenting or measuring an application. Configuring with these options does not force the user to use these packages, ie: configuring with PDT does not force the user to use source code based instrumentation (they can use compiler based instrumentation instead). Similarly configuring with PAPI does not forces the user to select any PAPI counters when profiling.

Specifies a different C++ compiler for PDT (tau_instrumentor). This is typically used when the library is compiled with a C++ compiler (specified with -c++) and the tau_instrumentor is compiled with a different compiler. For e.g.,

Unable to find off-the-shelves optics for your specific requirements? Check out our custom optics manufacturing capabilities and start customizing your optics with us now.

Specifies the directory where libsma.a resides and specifies the use of the TAU SHMEM interface.

Specifies that no exceptions be used while compiling the library. This is relevant for C++.

Khan academy is stating that it is 1/f = (1/di) - (1/do). Which one is it? I am struggling so bad on when to know if the image distance and ...

The only exception is configuring with the epilog (scalasca) tracing package. This will replace the TAU tracer with the epliog one, a single configuration cannot use both tracers.

Laser opticsPhysics

It works well with PDT and compiler based instrumentation of the source code and there is a wrapper interposition library that is linked in to track the communication of GPI. It is important to specify all TAU runtime options in the tau.conf file that must reside in the current working directory where the executable is stored and launched from. This is important because the worker tasks are spawned by the GPI daemon on remote nodes and do not inherit the user's working directory or the environment. So, options such as TAU_TRACE=1, and sampling must be specified in the tau.conf file.

Here you can download technical documentation and software for Allied Vision Stingray cameras: the technical manual, installation manual, application notes, ...

Specifies the location of the installed PDT (Program Database Toolkit) root directory. PDT is used to build tau_instrumentor, a C++, C and F90 instrumentation program that automatically inserts TAU annotations in the source code PDT. If PDT is configured with a subdirectory option (-compdir=) then TAU can be configured with the same option.

Specifies the location of the Vampir Trace package. With this option TAU will generate traces in Open Trace Format (OTF). For more information, see Technische Universitat Dresden

Each TAU configuration results in a single Makefile. These Makefiles denote the configuration that produced it and is used by the user to select the TAU libraries/scripts associated with its configuration. (These makefiles are named after the configuration options, ie. TAU configured with MPI, PDT, PGI compilers and the '-nocomm' option is named: Makefile.tau-nocomm-mpi-pdt-pgi). On most machines several configuration of TAU will need to be built in order to take full advantage of the many features of TAU. This section should help you decide on the smallest set of configuration you will need to build.

This script will attempt to validate a tau installation. Its only argument is TAU's architecture directory. These are some options:

Laser opticsprocedure

Specifies the directory where MPI header files reside (such as mpi.h and mpif.h). This option also generates the TAU MPI wrapper library that instruments MPI routines using the MPI Profiling Interface. See the examples/NPB2.3/config/make.def file for its usage with Fortran and MPI programs. MPI

uses PDT, MPI for IBM BG/P and specifies the use of the front-end xlC compiler for building tau_instrumentor.

Laser optics play a crucial role to focus, transmit, reflect, and altering/modify laser beams in achieving specific tasks. They are carefully designed and integrated to control the laser beam’s properties, enabling precise and efficient use of laser technology in various applications across different fields like laser cutting, laser welding, laser marking and engraving, laser medical treatment, laser scanning, fiber optics, laser spectroscopy, defense and security, and biomedical imaging.

Image

Specifies the location of the Python include directory. This is the directory where Python.h header file is located. This option enables python bindings to be generated. The user should set the environment variable PYTHONPATH to //lib/bindings- to use a specific version of the TAU Python bindings. By importing package pytau, a user can manually instrument the source code and use the TAU API. On the other hand, by importing tau and using tau.run(`'), TAU can automatically generate instrumentation. See examples/python directory for further information.

Laser optics encompasses the design, fabrication, and characterization of laser optical components and systems at a particular or broad scale of wavelengths of UV, Visible, and IR spectral regions that manipulate laser light to use in several industries. This includes the development of laser lenses, optical mirrors, prisms, optical windows, filters, DOEs, beam splitters, and other optical components.

Specifies the directory of where the Epilog library is to be found. Ex: if directory structure is: /usr/local/epilog/fe/lib/ let the install options be: -epilog=/usr/local/epilog -epiloglib=/usr/local/epilog/fe/lib.

TAU defaults to using any compilers found in the environment. To use a specific compiler use these options:

Path to the Score-P measurement system. Set the enviroment varible SCOREP_PROFILING_FORMAT to TAU_SNAPHOT so that Score-P will output Tau Snapsot profiles.

To install multiple (typical) configurations of TAU at a site, you may use the script `installtau'. It takes options similar to those described above. It invokes ./configure ; make clean install; to create multiple libraries that may be requested by the users at a site. The installtau script accepts the following options:

Image

Specifies a tag in the name of the stub Makefile and TAU makefiles to uniquely identify the installation. This is useful when more than one MPI library may be used with different versions of compilers. e.g.,