MTFimage quality

The idea here is to back drive the diffraction limited aperture calculation with a spot size based on the resolution calculated in the required resolution section. In other words, if you only need 7MP to make your image, you don’t necessarily have to worry about the diffraction that would show up on your 24MP sensor at the pixel level, since it won’t be visible to someone looking at the print from the given distance.

For this calculator, the minimum resolution would mean that a person with the visual acuity you specified standing at the specified viewing distance shouldn’t see pixelation or other artifacts due there not being enough resolution in the print.

I’m not quite sure I follow what you mean by optimal here. Can you explain what you’re thinking about in terms of optimal a little better?

From one perspective, that is the optimal resolution, since you’re not wasting space and pixels on information that won’t be seen.

VIETNAM:Alpha Industrial Park, Tu ThonVillage, Yen My District, HungYen Province 17721+84 221-730-8668sales-vn@avantierinc.com

That said, like many things in photography there’s a certain amount of fuzziness involved in all of this. Perception isn’t mechanical like a camera sensor is, and the brain will smooth out some issues as long as they aren’t massively glaring. Moreover, things like visual acuity tests people typically get aren’t perfect, you might be classed as 20/20 but actually are 20/19 or 20/24. A given viewer might be more sensitive to resolution issues—like another photographer trained to look for flaws. Or people might simply step closer to your images to admire their content.

Mtf functionformula

The final line in the Required Resolution section is the estimated resolution of a Bayer sensor to achieve the calculated image resolution. This is higher than the resolution in MP number because a Bayer sensor loses some resolution in the demosaicing process, and some more with the low-pass filter over the top.

Mtf functionin optical

In conclusion, the Modulation Transfer Function is a pivotal parameter for evaluating and optimizing optical systems. By understanding resolution, contrast, and how MTF combines these factors, optical designers can make informed decisions to select the right components and achieve superior image quality for their applications. MTF data serves as a powerful tool in the hands of those seeking precision and excellence in optical system design.

Modulation transferfunctionformula

This calculator computes the required minimum resolution needed to satisfy human visual acuity for a given size print at a given viewing distance. Further it calculates the aperture that will be diffraction limited for that resolution. See notes and theory below the calculator for the details.

Notifiy me when the article author replies to this comment (see details below). Email Notice Details: By checking the above checkbox, you are agreeing to recieve one email at the email address provided with this comment, for the sole purpose of notifing you that the article author has reseponded to your comment.

In other words, don’t get too caught up in the numbers, if you’re pictures are strong and make an emotional connection not being technically perfect won’t even matter.

Modulation transferfunctionin Ophthalmology

High-quality optics excel in transferring contrast at higher spatial frequencies, which translates to higher resolution. To assess this ability, MTF comes into play. MTF quantifies a lens’s capacity to transfer the contrast of a sample to an image using spatial frequency (resolution). Spatial frequency is defined as the number of line pairs per millimeter (lp/mm). Typically, MTF is determined using test charts featuring alternating black and white lines.

The required resolution is derived simply from considering the visual acuity of the human eye at a given distance and given acuity standard. This is little more than a transform from angular acuity of human vision, to spatial resolving power at the print converted to mega pixels.

I was wondering if, considering the increasing availability, you’d consider adding a line for the 43.8 x 32.9mm “medium format” digital sensors that Fuji and Hasselblad are putting out to this calculator and maybe even the “Diffraction Limited Effective Resolutions” calculator.

Shown as standard US eye test values. 20/60 was included since that’s what most camera manufacturers’ seem to use when computing the circle of confusion and depth of field scales.

Thanks for finding that. I noticed it was broken a couple of days ago, but I didn’t have a chance to dig into it. It’s fixed now.

For users of monochrome cameras, and Foevon based bodies the Resolution in MP value is the number you should be considering. For users of Bayer pattern cameras without low-pass filters, such as the Canon 5Ds R, Nikon D800e, Nikon D810, and Sony A7R, the actual value will likely be between the two MP numbers.

The results are all functionally the same but present the information in various ways. The first 2 line cover basic image information. In a lot of ways you can stop here and go with these numbers, and things should be okay. See the chart below for approximate conversion to other scales.

To that end, I’ve included the 1sq ft preset to allow you to calculate those kinds of prints. For example, an 8×10 foot print intended to be viewed from 3 feet away, and calculated using the default settings, would require a resolution of 1.3MP per square foot, or 104MP for the entire image.

Image

Note, this is of course a  skinny triangle  approximation. However, even at the minimum distance of 8 inches, the error is well below 0.001% of the actual value which is more than sufficient for these calculations.

The third line makes a naïve jump from image resolution to sensor resolution. That is it assumes there is no resolution loss between the native resolution of the sensor, and the image it produces. In practice, this isn’t true at all, as both the Bayer pattern sensor and the low-pass/anti-aliasing filter placed over the sensor reduce the sensor’s actual resolution somewhat.

Modulation transferfunctionRadiology

The larger print value (1 sq ft) is meant to be used to calculate the resolution need per square foot of a very large print, see the Big Prints section at the end.

The fundamental assumption is that the disc of confusion for a person with 20/20 vision is equal to 1 arc-minute (1/60th of a degree) in diameter. The “spot size” on the print is then calculated using s = x × tan(0.000290888209 × fs), where s is the spot size, x is the distance to the target and fs is conversion factor from 20/20 to one of the other visual acuity ratings. That gives us the diameter of a disk shaped “pixel” for the print that can’t be better resolved without moving closer or having better vision.

Modulation transferfunctionimage processing

The Modulation Transfer Function (MTF) is a vital parameter used to assess the performance of optical systems, ranging from simple lenses to complex imaging lens assemblies. It serves as a standardized quantitative measure for optical designers and microscopists to evaluate and compare lenses for various applications such as DNA sequencers, cell analyzers, slide scanners, and industrial inspection equipment. In this article, we will delve into the details of MTF, exploring its components, significance, and applications.

This was inspired by a number of people I’ve talked to bringing up the point that people have told them not to stop down past some f-number because of diffraction. The point here is that while anything past the diffraction-limited aperture of your camera system will see effects from diffraction, the effects may not be something to consider at all.

On the other hand, if you only just satisfy the threshold, then there’s no margin for someone with better vision or who stands closer. But then the question becomes what is optimal there? Do you figure on half the viewing distance? 50% better visual acuity?

For instance, the imaging lens, camera sensor, image capture boards, and video cables each have their associated MTF. By analyzing the system MTF curve, designers can determine which combination of components will provide sufficient performance for a given application, considering factors like contrast requirements and resolution.

Hi. “Diagonal of print” button seems to be broken at the moment. I checked the source code for you and you’ve changed the capitalization of “Print” in the text, which broke the logic on line 47 of print-res.js

By default, the calculator assumes the pixel is circumscribed around the disk of confusion. I would consider this the absolute minimum tolerable resolution for that size print and viewing distance.

Sorry about that, JS and HTML is a frustrating pair of languages to do anything easily and robustly. That’s fixed now, you may need to clear your browser’s cache and reload the page to get the fixed script.

MTFOptics

For the calculation here, I’ve assumed the Bayer patter and low-pass filter reduce the sensor’s resolving power by 25%, but I would note this isn’t something to be taken as gospel. The debayering algorithm can result in actual resolutions between 50% and nearly the native resolution of the sensor. 50% seems obscenely low given practical experience, and I know we’re not seeing 100% either, so I just used the middle value.

In traditional system integration, the resolution is often estimated based on the principle of the weakest link, assuming that the system’s resolution is solely limited by the component with the lowest resolution. However, this approach is flawed as every component within the system contributes to image quality, and the overall MTF of the system is the product of all the MTF curves of its components.

To put an example to this, the 6.4-micron pixels of my 5D mark III become diffraction limited at f/10.1. However, if I’m printing a 12×18 that will be viewed form 2 feet away, diffraction softening won’t start harming the image visibly until I’ve stopped down some degree further (f/21.4 with the default vision and pixel settings).

I’ve provided an “inscribed pixel” checkbox in this version of the calculator that causes the calculator to assume the image pixels are inscribed in the circle of confusion instead of circumscribed. This option ends up suggesting about 42% more resolution than its counterpart suggests.

One other thing to consider is really large prints. This tool is built around standard sized images, when you get into really large panoramas the normal rules fall apart to a large degree. Big prints intended to go on buildings or billboards won’t need nearly the resolution that a normal print would, simply due to the viewing distances. On the other hand, a big print meant to go on the wall and let users “step into the scene” will need it’s resolution calculated based on intended viewing distance and overall surface area.

MTF is a powerful tool to quantify the overall imaging performance of a system in terms of resolution and contrast. Understanding the MTF curves of each imaging lens and camera sensor within a system allows designers to make informed choices when optimizing for specific resolutions.

Resolution and contrast are fundamental factors in achieving sharp and clear images. Resolution pertains to an imaging system’s ability to distinguish fine object details and is typically expressed in line-pairs per millimeter (lp/mm), where each line-pair consists of a black line followed by a white line. Contrast, on the other hand, measures an optical system’s ability to distinguish between light and dark areas in an image.

If you really found this article useful, perhaps you'd consider helping me keep this site online by buying something through our affiliate links. You get to buy yourself something you already wanted, and I get a tiny commission because you used my link. Best of all, it doesn't cost you any more than it normally would. We both win!

MTF, as its name suggests, measures a lens’s capability to transfer contrast at specific resolutions from the object to the image. It combines both resolution and contrast into a single specification. As the line spacing decreases (frequency increases) on the test target, it becomes progressively challenging for the lens to efficiently transfer this decrease in contrast, resulting in a decrease in MTF.

Hi, I'm Jason and this is my site. I've been writing about the art, craft, and engineering behind photography for almost a decade now. Doing this is more than just my full time job, it's also my passion. Check out my latest projects on my YouTube channel.