Chytrá kamera TESLA Smart Camera 360 4G Battery - 360 kamera
Fuh, Y. K., Huang, W. C., Lee, Y. S. & Lee, S. An oscillation-free actuation of fluidic lens for optical beam control. Appl. Phys. Lett. 101, 2010–2013 (2012).
Cao, J. et al. Bioinspired zoom compound eyes enable variable-focus imaging. ACS Appl. Mater. Interfaces 12, 10107–10117 (2020).
What isfocuspoint in physics
Inagaki, T., Imai, T., Miyazu, J. & Kobayashi, J. Polarization independent varifocal lens using KTN crystals. Opt. Lett. 38, 2673–2675 (2013).
Icha, J., Weber, M., Waters, J. C. & Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays 39, https://doi.org/10.1002/bies.201700003 (2017).
Oku, H. & Ishikawa, M. High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error. Appl. Phys. Lett. 94, 2–5 (2009).
The M12 D-coded 4-pin female connector by AIXONTEC is specifically designed for industrial and outdoor applications with IP protection class 65/67.
Koyama, D., Isago, R. & Nakamura, K. Three-dimensional focus scanning by an acoustic variable-focus optical liquid lens. AIP Conf. Proc. 1474, 355–358 (2012).
What isfocusin light
Guo, Q., Zhao, X., Zhao, H. & Chigrinov, V. G. Reverse bistable effect in ferroelectric liquid crystal devices with ultra-fast switching at low driving voltage. Opt. Lett. 40, 2413–2416 (2015).
Chang, C., Lin, Y., Srivastava, A. K. & Chigrinov, V. G. An optical system via liquid crystal photonic devices for photobiomodulation. Sci. Rep. 8, 4251 (2018).
Lee, J., Park, Y. & Chung, S. K. Multifunctional liquid lens for variable focus and aperture. Sensors Actuators A 287, 177–184 (2019).
2024829 — Using these color codes ensures consistency across various platforms and mediums: Web Design: Hex and RGB codes help maintain visual consistency ...
Lopez, C. A. & Hirsa, A. H. Fast focusing using a pinned-contact oscillating liquid lens. Nat. Photon. 2, 610–613 (2008).
Karagyozov, D., Mihovilovic Skanata, M., Lesar, A. & Gershow, M. Recording neural activity in unrestrained animals with 3D tracking two photon microscopy. Cell Rep. 25, 1371–1383 (2018).
Kawamura, S., Tadayuki, I., Miyazu, J., Sakamoto, T. & Kobayashi, J. 2.5-fold increase in lens power of a KTN varifocal lens by employing an octagonal structure. Appl. Opt. 54, 4197–4201 (2015).
Martínez-Corral, M. & Javidi, B. Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems. Adv. Opt. Photonics 10, 512–566 (2018).
Yin, S. et al. Nanosecond KTN varifocal lens without electric field induced phase transition. Photonic Fiber Cryst. Devices Adv. Mater. Innov. Device Appl. XI https://doi.org/10.1117/12.2276511 (2017).
Kang, S., Dotsenko, E., Amrhein, D., Theriault, C. & Arnold, C. B. Ultra-high-speed variable focus optics for novel applications in advanced imaging. Proc. SPIE 10539, https://doi.org/10.1117/12.2294487 (2018).
Focuslens camera
Duocastella, M., Vicidomini, G. & Diaspro, A. Simultaneous multiplane confocal microscopy using acoustic tunable lenses. Opt. Express 22, 19293–19301 (2014).
Diffusionsfilter mit einem Durchmesser von 77 mm · Speziell designed für NiSi Swift System · Nanobeschichtung, wasserdichte und antireflektierende Beschichtung ...
SEDE Engineering Co.& Supplies Ltd , Lagos, Nigeria. 1 like · 2 talking about this. Building Chillers,Power and Cooling ,HVAC Maintenance...
Shain, W. J., Vickers, N. A., Goldberg, B. B., Bifano, T. & Mertz, J. Extended depth-of-field microscopy with a high-speed deformable mirror. Opt. Lett. 42, 995–998 (2017).
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Agarwal, K. & Macha, R. Multiple signal classification algorithm for super-resolution fluorescence microscopy. Nat. Commun. 7, 13752 (2016).
Kong, L., Tang, J. & Cui, M. In vivo volumetric imaging of biological dynamics in deep tissue via wavefront engineering. Opt. Express 24, 1214–1221 (2016).
Zong, W. et al. Large-field high-resolution two-photon digital scanned light-sheet microscopy. Cell Res. 25, 254–257 (2015).
Prevedel, R. et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods 11, 727–730 (2014).
Sreenilayam, S. P. et al. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect. Nat. Commun. 7, 11369 (2016).
Wei, M. T. et al. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat. Chem. 9, 1118–1125 (2017).
What isfocuspoint in camera
Hausotte, T., Gröschl, A. & Schaude, J. High-speed focal-distance-modulated fiber-coupled confocal sensor for coordinate measuring systems. Appl. Opt. 57, 3907–3914 (2018).
Fahrbach, F. O., Voigt, F. F., Schmid, B., Helmchen, F. & Huisken, J. Rapid 3D light-sheet microscopy with a tunable lens. Opt. Express 21, 21010–21026 (2013).
Bernet, S., Harm, W. & Ritsch-Marte, M. Demonstration of focus-tunable diffractive moiré-lenses. Opt. Express 21, 4317–4322 (2013).
Jul 26, 2023 — The type of contrast you choose can set the mood and tone of your photograph. High contrast can help to create a tense or energetic feel, while ...
202429 — La lunghezza focale di un obiettivo indica la distanza tra l'obiettivo e il punto focalizzato dell'immagine. Al contrario, la lunghezza focale ...
Reddy, G. D. & Saggau, P. Fast three-dimensional laser scanning scheme using acousto-optic deflectors. J. Biomed. Opt. 10, 064038 (2005).
Focusdefinition Science earthquake
Grulkowski, I., Szulzycki, K. & Wojtkowski, M. Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination. Opt. Express 22, 31746–31760 (2014).
Cheng, H. C., Xu, S., Liu, Y., Levi, S. & Wu, S. T. Adaptive mechanical-wetting lens actuated by ferrofluids. Opt. Commun. 284, 2118–2121 (2011).
Li, L., Wang, J.-H., Wang, Q.-H. & Wu, S.-T. Displaceable and focus-tunable electrowetting optofluidic lens. Opt. Express 26, 25839–25848 (2018).
A CMOS image sensor is a type of image sensor that's used in digital cameras. It's made up of millions of tiny pixels, and each one changes light into an ...
We acknowledge financial support from Princeton University. M.D. is a Serra Hunter Fellow. M.D. acknowledges Compagnia di San Paolo, ROL 34704.
Duocastella, M., Theriault, C. & Arnold, C. B. Three-dimensional particle tracking via tunable color-encoded multiplexing. Opt. Lett. 41, 863–866 (2016).
Yamato, K., Yamashita, T., Chiba, H. & Oku, H. Fast volumetric feedback under microscope by temporally coded exposure camera. Sensors 19, 1606 (2019).
Miccio, L., Paturzo, M., Grilli, S., Vespini, V. & Ferraro, P. Hemicylindrical and toroidal liquid microlens formed by pyro-electro-wetting. Opt. Lett. 34, 1075–1077 (2009).
Žurauskas, M., Barnstedt, O., Frade-Rodriguez, M., Waddell, S. & Booth, M. J. Rapid adaptive remote focusing microscope for sensing of volumetric neural activity. Biomed. Opt. Express 8, 4369–4379 (2017).
FocusLens price
Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006).
Mishra, K., van den Ende, D. & Mugele, F. Recent developments in optofluidic lens technology. Micromachines 7, 102 (2016).
Lu, S.-H. & Hua, H. Imaging properties of extended depth of field microscopy through single-shot focus scanning. Opt. Express 23, 10714–10731 (2015).
Zhang, Z., You, Z. & Chu, D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci. Appl. 3, e213 (2014).
Fixed Focal Length Lenses, commonly referred to as C-Mount Lenses, are used in many robotics or inspection applications. Fixed Focal Length Lenses are imaging ...
Chen, T., Fardel, R. & Arnold, C. B. Ultrafast z-scanning for high-efficiency micro-machining. Light Sci. Appl. 7, 17181 (2018).
Sheffield, M. E. J. & Dombeck, D. A. Calcium transient prevalence across the dendritic arbour predicts place field properties. Nature 517, 200–204 (2015).
Ashdown, G., Owen, D. M., Pereira, P. M., Gustafsson, N. & Henriques, R. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuation. Nat. Commun. 7, 12471 (2016).
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Mermillod-Blondin, A., McLeod, E. & Arnold, C. B. Acoustic gradient index of refraction lens. Opt. Lett. 33, 2146–2148 (2008).
Duocastella, M. & Arnold, C. B. Enhanced depth of field laser processing using an ultra-high-speed axial scanner. Appl. Phys. Lett. 102, 061113 (2013).
Manzo, C. & Garcia-Parajo, M. F. A review of progress in single particle tracking: from methods to biophysical insights. Rep. Prog. Phys. 78, 124601 (2015).
Shin, D., Kim, C., Koo, G. & Won, Y. Depth plane adaptive integral imaging system using a vari-focal liquid lens array for realizing augmented reality. Opt. Express 28, 5602–5616 (2020).
FocusOptical near me
Lu, Y. S., Tu, H., Xu, Y. & Jiang, H. Tunable dielectric liquid lens on flexible substrate. Appl. Phys. Lett. 103, 261113 (2013).
Jiang, J. et al. Fast 3-D temporal focusing microscopy using an electrically tunable lens. Opt. Express 23, 24362–24368 (2015).
Patra, R., Agarwal, S., Kondaraju, S. & Bahga, S. S. Membrane-less variable focus liquid lens with manual actuation. Opt. Commun. 389, 74–78 (2017).
Liu, S. & Hua, H. Extended depth-of-field microscopic imaging with a variable focus microscope objective. Opt. Express 19, 353–362 (2011).
Salter, P. S., Iqbal, Z. & Booth, M. J. Analysis of the three-dimensional focal positioning capability of adaptive optic elements. Int. J. Optomechatronics 7, 1–14 (2013).
Kang, S., Duocastella, M. & Arnold, C.B. Variable optical elements for fast focus control. Nat. Photonics 14, 533–542 (2020). https://doi.org/10.1038/s41566-020-0684-z
Sancataldo, G. et al. Three-dimensional multiple-particle tracking with nanometric precision over tunable axial ranges. Optica 4, 367–373 (2017).
In this Review, we survey recent developments in the emerging field of high-speed variable-z-focus optical elements, which are driving important innovations in advanced imaging and materials processing applications. Three-dimensional biomedical imaging, high-throughput industrial inspection, advanced spectroscopies, and other optical characterization and materials modification methods have made great strides forward in recent years due to precise and rapid axial control of light. Three state-of-the-art key optical technologies that enable fast z-focus modulation are reviewed, along with a discussion of the implications of the new developments in variable optical elements and their impact on technologically relevant applications.
Boucher, P., Barré, N., Pinel, O., Labroille, G. & Treps, N. Continuous axial scanning of a Gaussian beam via beam steering. Opt. Express 25, 23060–23069 (2017).
Xiao, W. & Hardt, S. An adaptive liquid microlens driven by a ferrofluidic transducer. J. Micromech. Microeng. 20, 055032 (2010).
Chen, H. et al. A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element. Opt. Express 22, 13138–13145 (2014).
Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).
Hou, S., Lang, X. & Welsher, K. Robust real-time 3D single-particle tracking using a dynamically moving laser spot. Opt. Lett. 42, 2390–2393 (2017).
Kong, L. et al. Continuous volumetric imaging via an optical phase-locked ultrasound lens. Nat. Methods 12, 759–762 (2015).
Zou, Y., Zhang, W., Tian, F., Siong Chau, F. & Zhou, G. Development of miniature tunable multi-element Alvarez lenses. IEEE J. Sel. Top. Quantum Electron. 21, 2–9 (2015).
Kim, J., Lee, J. & Won, Y. H. Method to reduce the aberration of a polygonal aperture focus-tunable lens array for high fill factor. Opt. Lett. 44, 2554–2557 (2019).
Radhakrishnan, H. & Charman, W. N. Optical characteristics of Alvarez variable-power spectacles. Ophthalmic Physiol. Opt. 37, 284–296 (2017).
Choi, J. M., Son, H. M. & Lee, Y. J. Biomimetic variable-focus lens system controlled by winding-type SMA actuator. Opt. Express 17, 8152–8164 (2009).
Murade, C. U., Van Der Ende, D. & Mugele, F. High speed adaptive liquid microlens array. Opt. Express 20, 18180–18187 (2012).
Hao, C. et al. Electrowetting on liquid-infused film (EWOLF): complete reversibility and controlled droplet oscillation suppression for fast optical imaging. Sci. Rep. 4, 6846 (2014).
Service anzeigen · mit LED Beleuchtung und externer Wasser- und Stromzufuhr · Startseite · Konfigurator · Spülsysteme · Aufputz · für bodenstehende Toiletten · mit LED ...
RayOptics
Jin, B., Ren, H. & Choi, W.-K. Dielectric liquid lens with chevron-patterned electrode. Opt. Express 25, 32411–32419 (2017).
Department of Mechanical and Aerospace Engineering and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ, USA
Zheng, J., Zuo, C., Gao, P. & Nienhaus, G. U. Dual-mode phase and fluorescence imaging with a confocal laser scanning microscope. Opt. Lett. 43, 5689–5692 (2018).
Zuo, C., Chen, Q., Qu, W. & Asundi, A. High-speed transport-of-intensity phase microscopy with an electrically tunable lens. Opt. Express 21, 24060–24075 (2013).
Lu, R. et al. Video-rate volumetric functional imaging of the brain at synaptic resolution. Nat. Neurosci. 20, 620–628 (2017).
Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11, 253–266 (2014).
Donnert, G., Eggeling, C. & Hell, S. W. Major signal increase in fluorescence microscopy through dark-state relaxation. Nat. Methods 4, 81–86 (2007).
Piazza, S., Bianchini, P., Sheppard, C., Diaspro, A. & Duocastella, M. Enhanced volumetric imaging in 2-photon microscopy via acoustic lens beam shaping. J. Biophotonics 11, e201700050 (2018).
Kaplan, A., Friedman, N. & Davidson, N. Acousto-optic lens with very fast focus scanning. Opt. Lett. 26, 1078–1080 (2001).
Hasan, N., Kim, H. & Mastrangelo, C. H. Large aperture tunable-focus liquid lens using shape memory alloy spring. Opt. Express 24, 13334–13342 (2016).
Kim, J., Kim, J., Na, J.-H., Lee, B. & Lee, S.-D. Liquid crystal-based square lens array with tunable focal length. Opt. Express 22, 3316–3324 (2014).
Basu, R. Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal. Appl. Phys. Lett. 105, 112905 (2014).
Bharath, M. et al. Compact vari-focal augmented reality display based on ultrathin, polarization-insensitive, and adaptive liquid crystal lens. Opt. Lasers Eng. 128, 26–32 (2020).
Bawart, M., Jesacher, A., Zelger, P., Bernet, S. & Ritsch-Marte, M. Modified Alvarez lens for high-speed focusing. Opt. Express 25, 29847–29855 (2017).
Rahman, A., Said, S. M. & Balamurugan, S. Blue phase liquid crystal: strategies for phase stabilization and device development. Sci. Technol. Adv. Mater. 16, 033501 (2015).
Grewe, B. F., Voigt, F. F., van ’t Hoff, M. & Helmchen, F. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Opt. Express 2, 2035–2046 (2011).
Ee, H. S. & Agarwal, R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 16, 2818–2823 (2016).
She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018).
Shibaguchi, T. & Funato, H. Lead–lanthanum zirconate–titanate (PLZT) electrooptic variable focal-length lens with stripe electrodes. Jpn. J. Appl. Phys. 31, 3196–3200 (1992).
Für Sony-E-Mount-Kameras und Objektive mit einem 49-mm-Filtergewinde · Beste Ergebnisse mit Weitwinkelobjektiven · Manuelle Schärfeeinstellung und Blendenwahl ...
Szulzycki, K., Savaryn, V. & Grulkowski, I. Rapid acousto-optic focus tuning for improvement of imaging performance in confocal microscopy. Appl. Opt. 57, C14–C18 (2018).
Kim, S. U., Na, J. H., Kim, C. & Lee, S. D. Design and fabrication of liquid crystal-based lenses. Liq. Cryst. 44, 2121–2132 (2017).
Shukla, R. K. et al. Electro-optic and dielectric properties of a ferroelectric liquid crystal doped with chemically and thermally stable emissive carbon dots. RSC Adv. 5, 34491–34496 (2015).
Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G. & Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017).
Yang, X., Song, X., Jiang, B. & Luo, Q. Multifocus optical-resolution photoacoustic microscope using ultrafast axial scanning of single laser pulse. Opt. Express 25, 28192–28200 (2017).
Koyama, D., Isago, R. & Nakamura, K. Ultrasonic variable-focus optical lens using viscoelastic material. Appl. Phys. Lett. 100, 091102 (2012).