The design flexibility of quantum cascade lasers has enabled their expansion into mid-infrared wavelengths of 3–25 μm. This Review focuses on the two major areas of recent improvement: power and power efficiency, and spectral performance.

Sirtori, C. et al. Quantum cascade laser with plasmon-enhanced wave-guide operating at 8.4 μm wavelength. Appl. Phys. Lett. 66, 3242–3244 (1995).

Bai, Y. et al. Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power. Appl. Phys. Lett. 92, 101105 (2008).

Mar 9, 2011 — Depth of Field is a function of Focal Length, Effective Aperture, Distance to Subject and Minimum Circle of Confusion. Minimum Circle of ...

Liu, P. Q., Wang, X. J., Fan, J. Y. & Gmachl, C. F. Single-mode quantum cascade lasers based on a folded Fabry–Pérot cavity. Appl. Phys. Lett. 98, 061110, (2011).

Yu, J. S., Slivken, S., Darvish, S. R. & Razeghi, M. Short wavelength (λ ∼ 4.3 μm) high-performance continuous-wave quantum-cascade lasers. IEEE Photon. Tech. Lett. 17, 1154–1156 (2005).

Fujita, K. et al. Broad-gain (Δλ/λ0 ∼ 0.4), temperature-insensitive (T0 ∼ 510K) quantum cascade lasers. Opt. Express 19, 2694–2701 (2011).

Wakayama, Y., Iwamoto, S. & Arakawa, Y. Switching operation of lasing wavelength in mid-infrared ridge-waveguide quantum cascade lasers coupled with microcylindrical cavity. Appl. Phys. Lett. 96, 171104 (2010).

Xie, F. et al. High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum-cascade lasers at λ ∼ 5.2 μm. Appl. Phys. Lett. 95, 091110 (2009).

Jul 24, 2024 — Also, not every objective is compatible with the PFS. You should go here: Objective Selector | Nikon Instruments Inc. and find the objectives ...

Vurgaftman, I. & Meyer, J. R. Photonic-crystal distributed-feedback quantum cascade lasers. IEEE J. Quant. Electron. 38, 592–602 (2002).

Wittmann, A. et al. Distributed-feedback quantum-cascade lasers at 9 μm operating in continuous wave up to 423 K. IEEE Photon. Tech. Lett. 21, 814–816 (2009).

Quantum cascade laserswikipedia

Fujita, K., Edamura, T., Furuta, S. & Yamanishi, M. High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design. Appl. Phys. Lett. 96, 241107 (2010).

Faist, J. et al. High power mid-infrared (λ > 5 μm) quantum cascade lasers operating above room temperature. Appl. Phys. Lett. 68, 3680–3682 (1996).

Weidmann, D. & Wysocki, G. High-resolution broadband (>100 cm−1) infrared heterodyne spectro-radiometry using an external cavity quantum cascade laser. Opt. Express 17, 248–259 (2009).

Slight, T. J. et al. λ ∼ 3.35 μm distributed-feedback quantum-cascade lasers with high-aspect-ratio lateral grating. IEEE Photon. Tech. Lett. 23, 420–422 (2011).

Bai, Y., Slivken, S., Darvish, S. R. & Razeghi, M. Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency. Appl. Phys. Lett. 93, 021103 (2008).

Gmachl, C. et al. Complex-coupled quantum cascade distributed-feedback laser. IEEE. Photon. Tech. Lett. 9, 1090–1092 (1997).

Yao, Y. et al. Broadband quantum cascade laser gain medium based on a 'continuum-to-bound' active region design. Appl. Phys. Lett. 96, 211106 (2010).

Fuchs, P. et al. Widely tunable quantum cascade lasers with coupled cavities for gas detection. Appl. Phys. Lett. 97, 181111 (2010).

Maulini, R., Mohan, A., Giovannini, M., Faist, J. & Gini, E. External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade. Appl. Phys. Lett. 88, 201113 (2006).

Cathabard, O., Teissier, R., Devenson, J., Moreno, J. C. & Baranov, A. N. Quantum cascade lasers emitting near 2.6 μm. Appl. Phys. Lett. 96, 141110 (2010).

Fujita, K., Edamura, T., Furuta, S. & Yamanishi, M. High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design. Appl. Phys. Lett. 96, 241107, (2010).

Lee, B. G. et al. Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm. IEEE Photon. Tech. Lett. 21, 914–916 (2009).

Fujita, K. et al. High-performance quantum cascade lasers with wide electroluminescence (∼600 cm−1), operating in continuous-wave above 100 °C. Appl. Phys. Lett. 98, 231102 (2011).

Wittmann, A. et al. Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies. Appl. Phys. Lett. 89, 141116 (2006).

Maulini, R., Beck, M., Faist, J. & Gini, E. Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers. Appl. Phys. Lett. 84, 1659–1661 (2004).

Bai, Y., Bandyopadhyay, N., Tsao, S., Slivken, S. & Razeghi, M. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl. Phys. Lett. 98, 181102 (2011).

Gresch, T., Giovannini, M., Hoyer, N. & Faist, J. Quantum cascade lasers with large optical waveguides. IEEE Photon. Tech. Lett. 18, 544–546 (2006).

Lyakh, A. et al. 1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm. Appl. Phys. Lett. 92, 111110 (2008).

Coherent® Optical Grade Polycrystalline CVD Diamond Windows feature high transmission across the ultraviolet (UV), far infrared (FIR), and microwave wavelength spectra. Manufactured from plasma chemical vapor deposited diamond by Coherent®, these windows offer high-purity, uniformity, and ultimate scratch resistance. These windows also have exceptional chemical resistance and biocompatibility, enabling their use in harsh environments as well as in medical applications. Coherent® Optical Grade Polycrystalline CVD Diamond Windows are used as exit windows of high-power CO2 lasers, offering higher thermal conductivity and lower absorption than other infrared materials to minimize effects on beam quality. Other common applications include their use as microwave windows in diamond-based nuclear detectors, general microwave engineering, and multi-spectral optic systems. Custom coating opportunities, including anti-reflection and high-reflectivity coatings, are available. Please contact us for more information.

Weidmann, D., Tsai, T., Macleod, N. A. & Wysocki, G. Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry. Opt. Lett. 36, 1951–1953 (2011).

The downside is that there's no longer a special area that has almost no distortion, like you might find on most other projections. This is why compromise ...

Finger, N., Schrenk, W. & Gornik, E. Analysis of TM-polarized DFB laser structures with metal surface gratings. IEEE J. Quant. Electron. 36, 780–786 (2000).

Wysocki, G. et al. Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications. Appl. Phys. B 81, 769–777 (2005).

Golka, S., Pflugl, C., Schrenk, W. & Strasser, G. Quantum cascade lasers with lateral double-sided distributed feedback grating. Appl. Phys. Lett. 86, 111103 (2005).

Quantum Cascadelaser price

FC CONNECTORS. Amphenol's FC connectors effectively terminate optical fiber in a variety of network applications. The connector is secured using a threaded ...

Menzel, S. et al. Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K. Opt. Express 19, 16229–16235 (2011).

Ball lenses are perfectly round optical spheres that consist of just one transparent substrate such as UV grade fused silica, BK7, or sapphire. Shaped like a ...

Bai, Y., Darvish, S. R., Bandyopadhyay, N., Slivken, S. & Razeghi, M. Optimizing facet coating of quantum cascade lasers for low power consumption. J. Appl. Phys. 109, 053103 (2011).

Evans, A. et al. High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers. Appl. Phys. Lett. 84, 314–316 (2004).

Carras, M. & De Rossi, A. Photonic modes of metallodielectric periodic waveguides in the midinfrared spectral range. Phys. Rev. B 74, 235120 (2006).

Mukherjee, N. & Patel, C. K. N. Molecular fine structure and transition dipole moment of NO2 using an external cavity quantum cascade laser. Chem. Phys. Lett. 462, 10–13 (2008).

Lu, Q. Y., Bai, Y., Bandyopadhyay, N., Slivken, S. & Razeghi, M. Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output. Appl. Phys. Lett. 97, 231119 (2010).

Blaser, S. et al. Low-consumption (<2W) continuous-wave singlemode quantum-cascade lasers grown by metal-organic vapour-phase epitaxy. Electron. Lett. 43, 1201–1202 (2007).

Can't find what you need? From fast modifications to stock optics to custom designs, we can help you take your optical system from design to prototype to volume production. Contact us to get started today.

Quantum cascadelaser applications

Zhang, J. C. et al. Low-threshold continuous-wave operation of distributed-feedback quantum cascade laser at λ ∼ 4.6 μm. IEEE Photon. Tech. Lett. 23, 1334–1336 (2011).

Yao, Y., Wang, X. J., Fan, J. Y. & Gmachl, C. F. High performance 'continuum-to-continuum' quantum cascade lasers with a broad gain bandwidth of over 400 cm−1. Appl. Phys. Lett. 97, 081115 (2010).

Yu, J. S., Slivken, S., Evans, A., Doris, L. & Razeghi, M. High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature. Appl. Phys. Lett. 83, 2503–2505 (2003).

Slivken, S., Matlis, A., Rybaltowski, A., Wu, Z. & Razeghi, M. Low-threshold 7.3 μm quantum cascade lasers grown by gas-source molecular beam epitaxy. Appl. Phys. Lett. 74, 2758–2760 (1999).

Darvish, S. R., Slivken, S., Evans, A., Yu, J. S. & Razeghi, M. Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 9.6 μm. Appl. Phys. Lett. 88, 201114 (2006).

Gmachl, C. et al. High temperature (T ≥ 425K) pulsed operation of quantum cascade lasers. Electron. Lett. 36, 723–725 (2000).

When an optical flat is placed on another surface and illuminated with monochromatic light, the light waves reflect off both - the bottom surface of the flat ...

Escarra, M. D. et al. Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy. Appl. Phys. Lett. 94, 251114 (2009).

Xie, F. et al. Room temperature CW operation of short wavelength quantum cascade lasers made of strain balanced GaxIn1− xAs/AlyIn1− yAs material on InP substrates. IEEE J. Sel. Top. Quant. 17, 1445–1452 (2011).

Gokden, B., Bai, Y., Bandyopadhyay, N., Slivken, S. & Razeghi, M. Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ∼ 4.36 μm. Appl. Phys. Lett. 97, 131112 (2010).

Lee, B. G. et al. Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy. Appl. Phys. Lett. 91, 231101 (2007).

Image

Faist, J. et al. Continuous-wave operation of a vertical transition quantum cascade laser above T=80 K. Appl. Phys. Lett. 67, 3057–3059 (1995).

Gokden, B., Tsao, S., Haddadi, A., Bandyopadhyay, N. & Slivken, S. Widely tunable, single-mode, high-power quantum cascade lasers. SPIE Proc. Integrated Photonics: Materials, Devices, and Applications 8069, 806905 (2011).

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Jan 16, 2016 — If you're new to photography, learn all about neutral density (ND) filters in our comprehensive guide. Master the art of light control and ...

Khurgin, J. B. et al. Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers. Appl. Phys. Lett. 94, 091101 (2009).

Page, H. et al. High peak power (1.1W) (Al)GaAs quantum cascade laser emitting at 9.7 μm. Electron. Lett. 35, 1848–1849 (1999).

Mohan, A. et al. Room-temperature continuous-wave operation of an external-cavity quantum cascade laser. Opt. Lett. 32, 2792–2794 (2007).

Faist, J. Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits. Appl. Phys. Lett. 90, 253512 (2007).

Yao, Y., Hoffman, A. & Gmachl, C. Mid-infrared quantum cascade lasers. Nature Photon 6, 432–439 (2012). https://doi.org/10.1038/nphoton.2012.143

From fast modifications to stock optics to custom designs, we can help you take your optical system from design to prototype to volume production. Contact us to get started today.

Lu, Q. Y., Bai, Y., Bandyopadhyay, N., Slivken, S. & Razeghi, M. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett. 98, 181106 (2011).

Blaser, S. et al. Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ ≈ 5.4 μm. Appl. Phys. Lett. 86, 041109 (2005).

Jun 15, 2013 — 3 Answers 3 · 3. @KeithDonegan any similar two part clear epoxy should do the trick. · This to That is usually a fairly good resource, or at ...

Gmachl, C., Sivco, D. L., Colombelli, R., Capasso, F. & Cho, A. Y. Ultra-broadband semiconductor laser. Nature 415, 883–887 (2002).

Xie, F. et al. High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum-cascade lasers at λ < 5.2 μm. Appl. Phys. Lett. 95, 091110 (2009).

Howard, S. S. et al. High-performance quantum cascade lasers: Optimized design through waveguide and thermal modeling. IEEE J. Sel. Top. Quant. 13, 1054–1064 (2007).

Green, R. P. et al. Room-temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 83, 1921–1922 (2003).

Diehl, L. et al. High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K. Appl. Phys. Lett. 88, 201115 (2006).

Quantum cascadelaser PDF

Bismuto, A., Beck, M. & Faist, J. High power Sb-free quantum cascade laser emitting at 3.3 μm above 350 K. Appl. Phys. Lett. 98, 191104 (2011).

Interbandcascadelaser

Semmel, J., Kaiser, W., Hofmann, H., Hofling, S. & Forchel, A. Single mode emitting ridge waveguide quantum cascade lasers coupled to an active ring resonator filter. Appl. Phys. Lett. 93, 211106 (2008).

Mujagić, E. et al. Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers. Appl. Phys. Lett. 96, 031111 (2010).

Dougakiuchi, T. et al. Broadband tuning of external cavity dual-upper-state quantum-cascade lasers in continuous wave operation. Appl. Phys. Express 4, 102101 (2011).

Chaparala, S. C., Xie, F., Caneau, C., Zah, C. E. & Hughes, L. C. Design guidelines for efficient thermal management of mid-infrared quantum cascade lasers. IEEE T. Compon. Pack. T. 1, 1975–1982 (2001).

Owschimikow, N. et al. Resonant second-order nonlinear optical processes in quantum cascade lasers. Phys. Rev. Lett. 90, 043902 (2003).

Tredicucci, A. et al. High-performance quantum cascade lasers with electric-field-free undoped superlattice. IEEE Photon. Tech. Lett. 12, 260–262 (2000).

Shin, J. C. et al. Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers. Appl. Phys. Lett. 94, 201103 (2009).

Bai, Y. B., Slivken, S., Kuboya, S., Darvish, S. R. & Razeghi, M. Quantum cascade lasers that emit more light than heat. Nature Photon. 4, 99–102 (2010).

Quantum cascadelaser spectroscopy

Luo, G. P. et al. Grating-tuned external-cavity quantum-cascade semiconductor lasers. Appl. Phys. Lett. 78, 2834–2836 (2001).

Sirtori, C. et al. Mid-infrared (8.5 μm) semiconductor lasers operating at room temperature. IEEE Photon. Tech. Lett. 9, 294–296 (1997).

Best Selling ; Dust-Off Falcon DPSXL Compressed Gas Duster - 10oz. (260). C $12.63 New ; Falcon Dust-Off Electronics Compressed Gas Duster, 10oz - 4 Pack. (7). C ...

Maulini, R., Yarekha, D. A., Bulliard, J. M., Giovannini, M. & Faist, J. Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser. Opt. Lett. 30, 2584–2586 (2005).

Evans, A. et al. Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency. Appl. Phys. Lett. 91, 071101 (2007).

Maulini, R. et al. Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature. Electron. Lett. 45, 107–108 (2009).

Lyakh, A. et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach. Appl. Phys. Lett. 95, 141113 (2009).

Hancock, G., van Helden, J. H., Peverall, R., Ritchie, G. A. D. & Walker, R. J. Direct and wavelength modulation spectroscopy using a CW external cavity quantum cascade laser. Appl. Phys. Lett. 94, 201110 (2009).

Kennedy, K. et al. High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings. Appl. Phys. Lett. 89, 201117 (2006).

Carras, M. et al. Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers. Appl. Phys. Lett. 96, 161105 (2010).

Maulini, R., Lyakh, A., Tsekoun, A. & Patel, C. K. N. λ ∼ 7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature. Opt. Express 19, 17203–17211 (2011).

Tredicucci, A. et al. High performance interminiband quantum cascade lasers with graded superlattices. Appl. Phys. Lett. 73, 2101–2103 (1998).

Xie, F. et al. Continuous wave operation of distributed feedback quantum cascade lasers with low threshold voltage and lower power consumption. Proc. SPIE 8277, 82770S (2012).

Quantum cascadelaser working principle

Liu, P. Q., Sladek, K., Wang, X. J., Fan, J. Y. & Gmachl, C. F. Single-mode quantum cascade lasers employing a candy-cane shaped monolithic coupled cavity. Appl. Phys. Lett. 99, 241112 (2011).

Yao, Y., Tsai, T., Wang, X. J., Wysocki, G. & Gmachl, C. F. Broadband quantum cascade lasers based on strongly-coupled transitions with an external cavity tuning range over 340 cm−1. 2011 Conf. on Lasers and Electro-Optics (2011).

Carras, M. et al. Top grating index-coupled distributed feedback quantum cascade lasers. Appl. Phys. Lett. 93, 011109 (2008).

Wysocki, G. et al. Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing. Appl. Phys. B 92, 305–311 (2008).

Please select your shipping country to view the most accurate inventory information, and to determine the correct Edmund Optics sales office for your order.

Lu, Q. Y., Bai, Y., Bandyopadhyay, N., Slivken, S. & Razeghi, M. 2. 4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett. 98, 181106 (2011).

Yu Yao and Anthony J. Hoffman: These two authors contributed equally to this work, and significantly more so than the third author

Beck, M. et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301–305 (2002).

Hoffman, A. J. et al. Low voltage-defect quantum cascade laser with heterogeneous injector regions. Opt. Express 15, 15818–15823 (2007).

Tunablequantum cascadelaser

Revin, D. G. et al. InP-based midinfrared quantum cascade lasers for wavelengths below 4 μm. IEEE J. Sel. Top. Quant. 17, 1417–1425 (2011).

Mid-infrared quantum cascade lasers are semiconductor injection lasers whose active core implements a multiple-quantum-well structure. Relying on a designed staircase of intersubband transitions allows free choice of emission wavelength and, in contrast with diode lasers, a low transparency point that is similar to a classical, atomic four-level laser system. In recent years, this design flexibility has expanded the achievable wavelength range of quantum cascade lasers to ∼3–25 μm and the terahertz regime, and provided exemplary improvements in overall performance. Quantum cascade lasers are rapidly becoming practical mid-infrared sources for a variety of applications such as trace-chemical sensing, health monitoring and infrared countermeasures. In this Review we focus on the two major areas of recent improvement: power and power efficiency, and spectral performance.

Faist, J. et al. Short wavelength (λ ∼ 3.4 μm) quantum cascade laser based on strained compensated InGaAs/AlInAs. Appl. Phys. Lett. 72, 680–682 (1998).

Yu, J. S. et al. High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8 μm. Appl. Phys. Lett. 87, 041104 (2005).

The authors acknowledge collaborations with colleagues at Princeton University and associated with the NSF Engineering Research Center MIRTHE. A.J.H. thanks S. Howard for valuable discussions. They also acknowledge partial support by MIRTHE (NSF-ERC) and DTRA.

Colombelli, R. et al. Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths. Appl. Phys. Lett. 78, 2620–2622 (2001).

Hoffman, A. J. et al. Lasing-induced reduction in core heating in high wall plug efficiency quantum cascade lasers. Appl. Phys. Lett. 94, 041101 (2009).

Beck, M. et al. Buried heterostructure quantum cascade lasers with a large optical cavity waveguide. IEEE Photon. Tech. Lett. 12, 1450–1452 (2000).

Katz, S., Vizbaras, A., Boehm, G. & Amann, M. C. High-performance injectorless quantum cascade lasers emitting below 6 μm. Appl. Phys. Lett. 94, 151106 (2009).

Howard, S. S., Liu, Z. J. & Gmachl, C. F. Thermal and stark-effect roll-over of quantum-cascade lasers. IEEE J. Quant. Electron. 44, 319–323 (2008).

Dec 8, 2023 — Of St. George, Ontario fell asleep in the Lord peacefully at Brantford General Hospital on December 8, 2023 at the age of 73. This came quickly ...

Faist, J., Beck, M., Aellen, T. & Gini, E. Quantum-cascade lasers based on a bound-to-continuum transition. Appl. Phys. Lett. 78, 147–149 (2001).

Ulrich, J., Kreuter, J., Schrenk, W., Strasser, G. & Unterrainer, K. Long wavelength (15 and 23 μm) GaAs/AlGaAs quantum cascade lasers. Appl. Phys. Lett. 80, 3691–3693 (2002).

Mujagić, E. et al. Two-dimensional broadband distributed-feedback quantum cascade laser arrays. Appl. Phys. Lett. 98, 141101 (2011).

Phillips, M. C., Myers, T. L., Wojcik, M. D. & Cannon, B. D. External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features. Opt. Lett. 32, 1177–1179 (2007).