[5] J. Feng, Y. Zhao, S.-S. Li, X.-W. Lin, F. Xu, and Y.-Q. Lu, “Fibre-optic pressure sensor based on tuneable liquid crystal technology”, Photonics Journal IEEE 2, 292–298 (2010). http://dx.doi.org/10.1109/JPHOT.2010.204536510.1109/JPHOT.2010.2045365Search in Google Scholar

[3] Carrasco-Vela, X. Quintana, and E. Otón, “Security devices based on liquid crystals doped with dichroic”, Proc. 7th Spanish Meeting of Optoelectronics, 2011. 10.2478/s11772-011-0049-8Search in Google Scholar

[17] G.D. Love and A.F. Naumov, “Modal liquid crystal lenses”, Liq. Cryst. Today 10, 1–4 (2000). http://dx.doi.org/10.1080/13583140175006146510.1080/135831401750061465Search in Google Scholar

LEDDesk Lamp

[6] E. Otón, D. Poudereux, X. Quintana, J.M. Otón, and M.A. Geday, “Design, manufacturing and characterization of a liquid crystal based blaze grating for space applications”, Proc. 7th Spanish Meeting of Optoelectronics, 2011. Search in Google Scholar

The bestDesk Lamp

[11] G.E. Nevskaya and M.G. Tomilin, “Adaptive lenses based on liquid crystals”, J. Opt. Tech. 75, 563–573 (2008). http://dx.doi.org/10.1364/JOT.75.00056310.1364/JOT.75.000563Search in Google Scholar

[15] G.V. Vdovin, I.R. Guralnik, O.A. Zayakin, N.A. Klimov, S.P. Kotova, M.Y. Loktev, and A.F. Naumov, “Modal liquid crystal wave-front correctors”, Bull. Russ. Acad. Sci. Phys. 72, 71–77 (2008). Search in Google Scholar

[20] P.J.W. Hands, A.K. Kirby, and G.D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143 (2004). http://dx.doi.org/10.1117/12.56235910.1117/12.562359Search in Google Scholar

[13] M. Ye, B. Wang and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material”, Opt. Express 16, 4302–4308 (2008). http://dx.doi.org/10.1364/OE.16.00430210.1364/OE.16.004302Search in Google Scholar

[27] J. Liu, B.-Z. Dong, B.-Y. Gu, and G.-Z. Yang, “Entirely electromagnetic analysis of micro-lenses without a beam shaping aperture”, Appl. Opt. 40, 1686–1691 (2001). http://dx.doi.org/10.1364/AO.40.00168610.1364/AO.40.001686Search in Google Scholar

BenQlamp

[4] W.A. Crossland, T.V. Clapp, T.D. Wilkinson, I.G. Manolis, A. Georgiou, and B. Robertson, “Liquid crystals in telecommunications systems”, Mol. Cryst. Liq. Cryst. 413, 2499–2518 (2004). http://dx.doi.org/10.1080/1542140049043882510.1080/15421400490438825Search in Google Scholar

[12] H. Ren, Y. Fan, S. Gauza, and S. Wu, “Tuneable-focus cylindrical liquid crystal lens”, Jpn. J. Appl. Phys. 43, 652–653 (2004). http://dx.doi.org/10.1143/JJAP.43.65210.1143/JJAP.43.652Search in Google Scholar

Lenticular array products have experienced a growing interest in the last decade due to the very wide range of applications they can cover. Indeed, this kind of lenses can create different effects on a viewing image such as 3D, flips, zoom, etc. In this sense, lenticular based on liquid crystals (LC) technology is being developed with the aim of tuning the lens profiles simply by controlling the birefringence electrically. In this work, a LC lenticular lens array has been proposed to mimic a GRIN lenticular lens array but adding the capability of tuning their lens profiles. Comb control electrodes have been designed as pattern masks for the ITO on the upper substrate. Suitable high resistivity layers have been chosen to be deposited on the control electrode generating an electric field gradient between teeth of the same electrode. Test measurements have allowed us to demonstrate that values of phase retardations and focal lengths, for an optimal driving waveform, are fairly in agreement. In addition, results of focusing power of tuneable lenses were compared to those of conventional lenses. The behaviour of both kinds of lenses has revealed to be mutually similar for focusing collimated light and for refracting images.

BenQ e-Reading LEDDesk Lamp

[25] A.A. Camacho, C. Solano, M. Cywiak, G. Martínez-Ponce, and R. Baltazar, “Method for the determination of the focal length of a micro-lens” Opt. Eng. 39, 2149–2152 (2000). http://dx.doi.org/10.1117/1.130554010.1117/1.1305540Search in Google Scholar

[8] O. Aharon, I. Abdulhalim, O. Arnon, L. Rosenberg, V. Dyomin, and E. Silberstein, “Differential optical spectropolarimetric imaging system assisted by liquid crystal devices for skin imaging”, J. Biomed. Opt. 16, 086008-1–086008-12 (2011). http://dx.doi.org/10.1117/1.360900310.1117/1.3609003Search in Google Scholar PubMed

[1] Gaebler, A. Moessinger, F. Goelden, A. Manabe, M. Goebel, R. Follmann, D. Koether, C. Modes, A. Kipka, M. Deckelmann, T. Rabe, B. Schulz, P. Kuchenbecker, A. Lapanik, S. Mueller, W. Haase, and R. Jakoby, “Liquid crystal-reconfigurable antenna concepts for space applications at microwave and millimeter waves”, Int. J. Ant. Prop. 2009, 1–7 (2009). Search in Google Scholar

IKEAdesk lamp

[7] E.J. Fernández, P.M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator”, Opt. Express 17, 11013–11025 (2009). http://dx.doi.org/10.1364/OE.17.01101310.1364/OE.17.011013Search in Google Scholar PubMed

[14] S. Sato, “Applications of liquid crystals to variable-focusing lenses”, Opt. Rev. 6, 471–485 (1999). http://dx.doi.org/10.1007/s10043-999-0471-z10.1007/s10043-999-0471-zSearch in Google Scholar

[19] N. Fraval and J.L.B. de la Tocnaye, “Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths”, Appl. Opt. 49, 2778–2783 (2010). http://dx.doi.org/10.1364/AO.49.00277810.1364/AO.49.002778Search in Google Scholar PubMed

[16] A.F. Naumov, M.Y. Loktev, I.R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control”, Opt. Lett. 23, 992–994 (1998). http://dx.doi.org/10.1364/OL.23.00099210.1364/OL.23.000992Search in Google Scholar

[26] L. Erdmann and R. Kowarschik, “Testing of refractive silicon micro-lenses by use of a lateral shearing interferometer in transmission”, Appl. Opt. 37, 676–682 (1998). http://dx.doi.org/10.1364/AO.37.00067610.1364/AO.37.000676Search in Google Scholar PubMed

Dysondesk lamp

[23] V. Urruchi, J.F. Algorri, J.M. Sánchez-Pena, N. Bennis, M.A. Geday, and J.M. Otón, “Electro-optic characterization of tuneable cylindrical liquid crystal lenses”, Mol. Cryst. Liq. Cryst. 553, 211–219 (2012). http://dx.doi.org/10.1080/15421406.2011.60947310.1080/15421406.2011.609473Search in Google Scholar

[9] N. Peyghambarian, G. Li, D. Mathine, and P. Valley, “Electro-optic adaptive lens as a new eyewear”, Mol. Cryst. Liq. Cryst. 454, 157–166 (2006). http://dx.doi.org/10.1080/1542140060065649110.1080/15421400600656491Search in Google Scholar

[22] Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P.C.-P. Chao, C.-C. Tsai, and C.-N. Mo, “An auto-stereoscopic 3D display using tuneable liquid crystal lens array that mimics effects of GRIN lenticular lens array”, SID International Symposium, Dig. Tech. Pap. 111–114 (2009). 10.1889/1.3256482Search in Google Scholar

[2] X. Wang, T.D. Wilkinson, M. Mann, K.B.K. Teo, and W.I. Milne, “Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes”, Appl. Opt. 49, 3311–3315 (2010). http://dx.doi.org/10.1364/AO.49.00331110.1364/AO.49.003311Search in Google Scholar PubMed

[18] S.P. Kotova, V.V. Patlan, and S.A. Samagin, “Tuneable liquid-crystal focusing device. 1. Theory”, Quantum. Electron. 41, 58–64 (2011). http://dx.doi.org/10.1070/QE2011v041n01ABEH01440610.1070/QE2011v041n01ABEH014406Search in Google Scholar