Ring Size Chart & Conversion Guide (how to get it right) - 16.1mm to inches
But what about energy levels? In the previous two sources, light was produced when an electron changed energy levels. Is that true in this case? Yes, the light you see from a filament is also produced by electrons transitioning between energy levels. The difference between a filament and a fluorescent bulb is that the filament is a solid. In solid materials, atoms interact with other atoms to slightly change nearby atom’s energy levels. The result is that you have many different atoms with many different energy levels. There is such a variety of energy levels that you get all possible transitions and all possible colors of light (once you have enough energy). When you combine all the possible colors of light, the human eye perceives this as white light.
Lenses with an angle of view of 35° or narrower are considered long-focus lenses. This translates to a focal length of about 70 mm and greater on full-frame cameras, and about 45 mm and longer on APS‑C cameras. It’s common for photographers to (incorrectly) refer to long-focus lenses as “telephoto” lenses. A true telephoto lens is one whose indicated focal length is longer than the physical length of its body. Due to this ubiquitous misuse of the word, there exists a further classification of long-focus lenses whose angle of view is 10° or narrower called “super telephoto” lenses (equal to or greater than 250 mm on full-frame cameras and 165 mm on APS‑C cameras). Fortunately, super telephoto lenses are more often than not actual telephoto designs. A great example is the Canon EF 800 mm f/5.6L IS USM Lens, which is only 461 mm long.
If you’re into math—and who isn’t?—the general formula for calculating the angle of view when you know the focal length and the sensor size is:
The incandescent light might seem like the simplest light to explain. If you examine one carefully, you can see that there is not much to look it. Basically, it is just a wire inside a glass container. If you want to get a little more complicated, inside the glass bulb there are two wires that support a much tinier wire in between them---the tiny wire is called the filament.
A zoom lens allows photographers to vary its effective focal length through a specified range, which alters the angle of view and magnification of the image. Zoom lenses are described by stating their focal length range from the shortest to longest, such as 24–70 mm and 70–200 mm. The focal length range of a zoom lens directly correlates to its zoom ratio, which is derived by dividing the longest focal length by the shortest. Both of the lenses above have a zoom ratio of approximately 2.9x, or 2.9:1. The zoom ratio also describes the amount of subject magnification a single lens can achieve across its available focal length range.
Due to their ability to magnify distance objects, long-focus lenses present photographers with many uses. They are almost universally lauded for portraiture because their narrow angle of view allows for a higher magnification of the subject from conventionally more pleasing perspectives. As a rule of thumb, a desirable focal length for a portrait lens starts at twice the normal focal length for the camera system (about 85 mm for full-frame and 56 mm for APS‑C).
Is there a downside? Right now, the only downside is that they are a bit more expensive for larger applications. The price for these devices seems to be dropping fast though. Soon we might be using LED lights much more than we did in the past.
Light illuminationunit
Here is the basic operating principle. When you run electric current through a wire, it gets hot. The filament is just a wire that gets so hot that it glows. It’s that simple. But then, why the glass? The glass bulb serves one primary function---keep the air out. When a hot filament comes in contact with air, it will burn and melt. With a melted filament, you no longer have a working bulb.
Types ofilluminationpdf
Another problem with the fluorescent lamp is the lifespan. If you crack the glass tube, the gas will escape and the light won’t work. The ballast can also fail and the elements inside the bulb eventually wear out. They don’t last forever.
For instance, on full-frame cameras, whose image sensors measure 36×24 mm, the diagonal length is approximately 43 mm, and yet, the 50 mm lens is conventionally considered normal. On APS‑C cameras (24 × 16 mm), whose diagonal spans about 28 mm, a 35 mm focal length is regarded as normal primarily because its angle of view is similar to the 50 mm lens on the full-frame format. Therefore, normal focal lengths will differ as a function of the camera’s image sensor size. In fact, as you continue reading, keep in mind that descriptive terms such as “ultra-wide,” “short,” “long,” et cetera, implicitly refer to the angle of view of a lens.
There is one thing in common to all light production methods. They all deal with electrons changing energy levels. When we think of energy for macroscopic objects, we imagine that they could have any particular energy level. I can throw a tennis ball so that it has 10 Joules of kinetic energy or 10.1 Joules or any value in between. This isn’t exactly true and as we look at smaller and smaller things, it’s obviously not true. An electron in some type of system can only have certain energy levels.
If the LED is a relatively new method for creating artificial light, why am I starting with this one first? In terms of physics, I think the LED might be the easiest to explain. Now wait, don’t get me wrong. The LED is still complicated---but it might still be the easiest device to explain.
Light illuminationlevel
For any given camera system, normal lenses are generally the “fastest” available. Adjectives such as “fast” and “slow” always describe lens speed, which refers to a lens’ maximum aperture opening. For instance, a lens with a ƒ/2 or larger aperture is generally considered fast; a lens with a ƒ/5.6 or smaller aperture is deemed to be slow. How is speed relevant to aperture? Recall the reciprocity law: larger apertures permit more light into the camera, thereby allowing you to use faster shutter speeds, and vice versa.
Let’s look at a similar light first---the neon lamp. Start with a glass tube that is filled with neon gas. Now apply a large voltage across the ends of the tube. The electric potential difference inside the tube will cause free electrons to accelerate and collide with the neon atoms. On collision, these electrons can excite electrons in the neon to higher energy levels. When the excited electrons in the neon atoms come back down to lower energy levels, they produce light.
Go outside on a bright and sunny day. Take a look at a flower or a tree. You can see that flower because light from the sun travels all the way to the flower. When the light reflects off the flower it then travels to your eye and you can see the flower. Remove the light from the sun and you just see blackness. Even at night humans can see things---but there has to be some type of light reflecting off objects to see. Sunlight reflected off the surface of the moon provides a surprising amount of light for most outdoor activities at night.
A “normal” lens is defined as one whose focal length is equal to the approximate diagonal length of a camera’s image sensor. In practice, such lenses tend to fall into a range of slightly longer focal lengths that are claimed to possess an angle of view comparable to that of the human eye’s cone of visual attention, which is about 55°.
You’ve used LED lights for quite some time. They are in your infrared (IR) remote control for your TV. They are the light source for the flash on your smartphone camera. There’s even a good chance that LED lights are used to make your computer screen visible. The LED started seeing real uses in the 1960s and today they are everywhere.
The angle of view describes the breadth, or how much, of a scene is captured by the lens and projected onto your camera’s image sensor. It’s expressed in degrees of arc and measured diagonally along the image sensor. Thus, the angle of view of any lens of a given focal length will change depending on the size of the camera’s image sensor. For example, a 50 mm lens has a wide angle of view on a medium format camera, a normal angle of view on a full-frame camera, a narrower angle of view on an APS‑C camera, and a narrow angle of view on a Micro Four-Thirds camera.
That’s it. The four ways humans make light. Yes, these explanations are not complete. In order to really understand light, you would probably need to take several undergraduate courses in physics. Well, that would at least get you started.
Light illuminationtest
If you go inside a building at night, you might not be able to use the moonlight. In that case you need some artificial light source to see. Since this is the International Year of Light, let me go over the four common methods for creating artificial light along with the basic physics that makes them work.
What does this have to do with the LED? The LED is a solid state device. This means that the process is not governed by a typical chemical reaction or mechanical method. The solid state device is a combination of two different semiconductor materials in which electrons can move about at different energy levels due to the periodic nature of the material. This produces an energy gap for electrons in the system. Yes, when electrons transition across this energy gap, they produce light, light of a particular color.
Where does the light come from? In the burning process, there is something other than carbon dioxide produced. It is generally called soot---but it is basically unburned pieces of material. This extra material gets caught in the along with hot air and rises above the combustion area. Since the soot is hot, it produces light in the visible spectrum just like a lightbulb filament or a hot stove eye.
A true zoom lens, known as a parfocal lens, maintains a set focus distance across its entire focal length range. In the days before digital photography—before electronic autofocus, even—it was common practice to focus a zoom lens at its longest focal length before taking the picture at the desired (if different) focal length. This technique is no longer possible because contemporary variable focal length lenses designed for photography are almost exclusively varifocal lenses, which do not maintain set focus across their zoom range. In practice, most photographers do not know the difference because the autofocus algorithms in their cameras compensate for the slight variations.
A prime or fixed focal length lens has a set focal length that cannot be changed. There are several critical differences between prime and zoom lenses that you should know. Prime lenses are generally smaller, faster, and have better optical characteristics than zoom lenses. Despite this, photographers frequently opt to shoot with zoom lenses because of their convenience: a single lens can replace several of the most popular focal length prime lenses. This is especially important when you’d prefer to pack light, such as during a trip or a hike.
Light illuminationcalculation
But why aren’t these fluorescent lamps (and compact fluorescents) as good as an LED light? There are a couple of disadvantages. First, in order to excite the gas you need a high voltage applied to the tube. To get this high voltage, a fluorescent lamp uses an electromagnetic ballast that take the normal household voltage and ramp it up to a higher level. This ramp up process isn’t perfect and produces heat in the process which means the lamp isn’t as energy efficient as the LED.
Light illuminationNagoya
In photography, the most essential characteristic of a lens is its focal length, which is a measurement that describes how much of the scene in front of you can be captured by the camera. Technically, the focal length is the distance between the secondary principal point (commonly and incorrectly called the optical centre) and the rear focal point, where subjects at infinity come into focus. The focal length of a lens determines two interrelated characteristics: magnification and angle of view.
Here is a simple experiment. Turn on the stove in your kitchen, but don’t put a pot on it. Very soon, the eye of the stove will become hot (don’t touch it). As the temperature continues to increase, you will eventually see the eye glowing red. This is exactly what happens with the filament in the bulb. It is so hot that it doesn’t glow red, but yellow-white.
Modern fluorescent bulbs produce appropriate colors and don’t flicker as much as older bulbs. This makes them an excellent replacement for the older incandescent bulbs.
Early LED lights produced only infrared light (light with frequencies that humans can’t see). After that, we started creating red and then green LEDs. Finally, a blue LED was created (but carefully combining different semiconductors). With the blue LED you get two things. First, you can use red, green, and blue (RGB) lights to make video displays. Second, using blue LEDs and some other tricks you can make a white looking LED that can be used for lights.
The focal length of a lens determines its magnifying power, which is the apparent size of your subject as projected onto the focal plane where your image sensor resides. A longer focal length corresponds to greater magnifying power and a larger rendition of your subject, and vice versa.
Is fire more efficient than an incandescent lightbulb? Well, it is difficult to compare the two lighting methods. One runs on electricity and the other runs on carbon-based material (with no electricity). Of course the fire still produces lots of heat which may or may not be a good thing (depending on what you are using it for). The other issue with fire is that it produces carbon dioxide which isn’t really a good thing to have too much of. Oh, sometimes fire gets other things so hot that they also start interacting with the oxygen. Sometimes these other burning things are important things like your house. So overall, fire is nice but we can do better.
There are two types of wide-angle lenses, rectilinear and fisheye (sometimes termed curvilinear). The vast majority of wide-angle lens—and other focal lengths, too—are rectilinear. These types of lenses are designed to render the straight elements found in a scene as straight lines on the projected image. Despite this, wide-angle rectilinear lenses cause rendered objects to progressively stretch and enlarge as they approach the edges of the frame. In photography, all fisheye lenses are ultra wide-angle lenses that produce images featuring strong convex curvature. Fisheye lenses render the straight elements of a scene with a strong curvature about the centre of the frame (the lens axis). The effect is similar to looking through a door’s peephole, or the convex safety mirrors commonly placed at the blind corners of indoor parking lots and hospital corridors. Only straight lines that intersect with the lens axis will be rendered as straight in images captured by fisheye lenses.
Every atom has its own unique energy levels. This means that different gasses would produce different colors corresponding to the different energy levels. Neon has that classic red-orange. If you are excite a gas of mercury vapor, you get a different color (from different energy levels). These gases don’t just create one color of light, instead they make many different colors that correspond to different energy level transitions. You can see the individual colors by looking through a diffraction grating (a slide with many tiny lines on it). This is what that would look like for both the neon and mercury vapor.
What makes the LED light so great? First, they can be very small and robust. If you don’t run too much current through them, they last a very long time and they don’t break just by shaking them. Second, the LED light doesn’t get very hot when it is on. The less energy that goes into heating the device means that more energy goes to light. LED lights are much more energy efficient that other devices.
Let’s look at the simplest case---the hydrogen atom which consists of just a proton and an electron. At its lowest energy level, the electron is at an energy level of -13.6 eV (electron volts is a unit of energy). If the electron moves to the next higher energy level, it would be at -3.4 eV (which is indeed higher than -13.6 eV. The electron in hydrogen can NOT be at an energy level between -13.6 and -3.4 eV. That’s just the way it is.
Fluorescent lights have been around for quite some time. They began to be popular for office and industrial settings in the 1950s, but now they are in most homes. Now we also have the compact fluorescent. As you can guess, this is just a fluorescent bulb that is small enough to fit in the sockets of traditional incandescent lights. But how do they work?
© 2024 Condé Nast. All rights reserved. WIRED may earn a portion of sales from products that are purchased through our site as part of our Affiliate Partnerships with retailers. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Condé Nast. Ad Choices
Subject size is directly proportional to the focal length of the lens. For example, if you photograph a soccer player kicking a ball, then switch to a lens that is twice the focal length of the first, the rendered size of every element in your image, from the person to the ball, will be doubled in size along the linear dimensions.
The relationship between the angle of view and a lens’s focal length is roughly inversely proportional from 50mm and up on a full-frame camera. However, as the focal length grows increasingly shorter than 50mm, that rough proportionality breaks down, and the rate of change in the angle of view slows. For example, the change in angle of view from 100mm to 50mm is more pronounced than the change from 28mm to 14mm.
Illuminationlighting meaning
That seems like a complete explanation, but why do hot things produce light? It turns out that all solids produce light. Yes, it’s true. Your pencil produces light. The apple on the countertop produces light. These everyday things produce light, but they produce light that you can’t see---light with wavelengths longer than the wavelength of red light. We call this light infrared. If you take an object and slowly increase its temperature, it will produce different wavelength of light. When it gets hot enough, the light will be in the visible range.
It’s important to recognize that the convenience and flexibility of zoom lenses can inspire lazy photography. The ease of changing the angle of view encourages photographers to settle on compositions that are good-enough, instead of seeking out better perspectives and gaining a deeper understanding of their subjects. Whatever lens you have, be it zoom or prime, it’s vital for the development of good photography to consider your subject from several perspectives by walking towards, stepping away, and circling around them.
In photography, the term macro refers to extreme close-ups. Macro lenses are normal to long-focus lenses capable of focusing on extremely close subjects, thereby rendering large reproductions. The magnification ratio or magnification factor is the size of the subject projected onto the image sensor in comparison to its actual size. A macro lens’ magnification ratio is calculated at its closest focusing distance. A true macro lens is capable of achieving a magnification ratio of 1:1 or higher. Lenses with magnification ratios from 2:1 to 10:1 are called super macro. Ratios over 10:1 cross over into the field of microscopy. When shopping for a macro lens, keep in mind that in the context of kit lenses and point-and-shoot cameras, some manufacturers use the macro moniker as marketing shorthand for “close-up photography.” These products do not achieve 1:1 magnification ratios. When in doubt, check the technical specifications.
In general, a short focal length—or short focus, or “wide-angle”—lens is one whose angle of view is 65° or greater. Recall from above that angle of view is determined by both focal length and image sensor size, which means that what qualifies as “short” is predicated upon a camera’s image sensor format. Therefore, on full-frame cameras, the threshold for wide-angle lenses is 35 mm or less, and on APS‑C cameras, it’s 23 mm or less. Lenses with an angle of view of 85° or greater are called “ultra wide-angle,” which is about 24 mm or less on full-frame and 16mm or less on APS‑C cameras.
Although the incandescent lightbulb is simple to make, it’s not the best device for light. The problem is that the bulb makes light by getting very hot. Very hot means very bad and wasted energy. Most of the energy you get from an incandescent bulb goes straight into thermal energy that you don’t want (unless you are using the lightbulb to heat things up).
LEDilluminationlights
Beyond portraiture, long-focus lenses are useful for isolating subjects in busy and crowded environments. Photojournalists, wedding, and sports photographers exploit this ability regularly. Due to their magnifying power, super telephoto lenses are a mainstay for wildlife and nature photographers. Lastly, long-focus lenses are frequently used by landscape photographers to capture distant vistas or to isolate a feature from its surroundings.
Wide-angle lenses represent the only practical method of capturing a scene whose essential elements would otherwise fall outside the angle of view of a normal lens. Conventional subjects of ultra wide-angle lenses include architecture (especially interiors), landscapes, seascapes, cityscapes, astrophotography, and the entire domain of underwater photography. Wide-angle lenses are often used for photojournalism, street photography, automotive, some sports, and niche portraiture.
You might think that fire is the simplest of all lighting sources. Yes, it is simple to create and simple to control. However, it is not so simple to explain. Much of the organic matter we see (like wood and coal and oil) contain carbon that is bound to other molecules. It turns out that this carbon can also make very strong chemical bonds with oxygen to form carbon dioxide. Although it takes some energy to pull a carbon away from its other bonds, the formation of carbon dioxide also produces extra energy. And this is the basic idea behind fire. With a little bit of starting energy, you can turn organic carbon and oxygen into carbon dioxide.
The constant angle of view of a prime lens forces this type of experimentation—“zooming with your feet”—because the other options are either bad pictures or no pictures. Furthermore, restricting yourself to a single focal length for an extended period of time acquaints you to its angle of view and allows you to visualize a composition before raising the camera to your face.
It’s important to understand that the degree to which the focal length magnifies an object does not depend on your camera or the size of its image sensor. Assuming a fixed subject and subject distance, every lens of the same focal length will project an image of your subject at the same scale. For example, if a 35 mm lens casts a 1.2 cm image of a person, that image will remain 1.2 cm high regardless of your camera’s sensor format. However, on a Micro Four Thirds format camera, the image of that person will fill the height of the frame, whereas it will occupy half the height of a full-frame image sensor, and about one-third the height of a medium format image sensor. As you progress from a smaller sensor to a larger one, the 1.2 cm high projection of the person remains unchanged, but it occupies a smaller part of the total frame. Therefore, although the absolute size of the image will stay constant across varying image sensor formats, its size in proportion to each image sensor format will be different.
Clearly we don’t want to use neon lamps for normal lighting. It’s just not the right color. Mercury vapor seems closer, but not quite right. Here is the trick for fluorescent lamps---fluorescence. Fluorescence is the process through which a material absorbs a particular wavelength (color) of light and re-emits a color with a longer wavelength. In the case of a fluorescent bulb, there is a coating on the inside of the glass that absorbs ultraviolet light (which you can’t normally see) and re-emits it as visible light. Yes, it’s a complicated process, but that’s how it works.
As you have learned in the section on apertures and f‑numbers, “an increase in focal length decreases the intensity of light reaching the image sensor.” This relationship is most obvious in zoom lenses. A “variable” aperture zoom lens is a lens whose maximum aperture becomes smaller with increased focal length. These types of zoom lenses are simple to spot because they list a maximum aperture range instead of a single number. The range specifies the maximum aperture for the shortest and longest focal lengths of the zoom range. Variable aperture lenses are the most common type of zoom lens. A constant aperture or “fixed” aperture zoom lens is one whose maximum aperture remains constant across the entire zoom range. Fixed aperture lenses are typically more massive and more expensive than their variable aperture counterparts. They are also more straightforward to work with when practicing manual exposure at the maximum aperture since no compensation for lost light is required during zooming.
But what does this have to do with light? It turns out that when an electron makes the transition from a higher energy level to a lower energy level, it produces light. Also, the frequency of this light is proportional to the energy change. Humans perceive different frequencies of light (in the narrow spectrum of all electromagnetic waves) as different colors of light.