Visiblelightwavelength

The term absorption is not only used for absorption processes, but also often for related quantities, e.g. instead of absorption coefficient.

Absorption of light can also have electrical effects. For example, there are photoresistors, where the electrical resistance is reduced by absorbed light. In photodiodes and phototransistors, one exploits the internal photoelectric effect, related to the excitation of electric carriers by light absorption.

Absorbance AU

Please do not enter personal data here. (See also our privacy declaration.) If you wish to receive personal feedback or consultancy from the author, please contact him, e.g. via e-mail.

Light absorption processes e.g. in solid materials generally arise from the interaction of the electromagnetic wave with electrons, exciting those to excited energy levels. Thereafter, it takes some time (the electron–lattice thermalization time) for that energy to be transferred to the atomic nuclei, i.e., to vibration energy. That typically happens within a couple of picoseconds, and thereafter it takes far longer times to distribute that heat over some volume of the medium. That means that the thermalization, let alone the heat conduction, can take far more time than the pulse duration of a femtosecond laser. That has important implications for laser material processing with ultrafast lasers, where the involved processes cannot be understood as simply heating up the material. Instead, one is dealing with highly non-equilibrium states of matter, which can lead to rapid application of material while very nearby other material, not directly hit by the laser radiation, is not even significantly heated.

Through different kinds of processes, which are explained in the following, light can be absorbed in various media. This implies that the optical energy is converted into some other form of energy (but sometimes back again to optical energy). In most cases, the energy is eventually transformed into heat (thermal energy).

Even simple linear absorption processes introduce some amount of quantum noise. This can be intuitively understood by considering that some of the incident photon are randomly removed, while other photons remain in the light beam. An initially perfectly regular stream of photons (→ amplitude-squeezed light) would thus be converted into a random stream of photons, exhibiting some intensity noise.

By submitting the information, you give your consent to the potential publication of your inputs on our website according to our rules. (If you later retract your consent, we will delete those inputs.) As your inputs are first reviewed by the author, they may be published with some delay.

Lightabsorption

You can visit this page at any time to learn more about cookies, get the most up to date information on how we use cookies and manage your cookie settings. We will not use cookies for any purpose other than the ones stated, but please note that we reserve the right to update our cookies.

Hamamatsu uses cookies in order to enhance your experience on our website and ensure that our website functions.

We use third-party cookies (such as Google Analytics) to track visitors on our website, to get reports about how visitors use the website and to inform, optimize and serve ads based on someone's past visits to our website.

If light is absorbed by atoms or molecules of a gas, light forces associated with the absorption may become relevant. They can be used for Doppler cooling, for example.

If the incident light is in a coherent state, exhibiting the standard shot noise level, the extra noise added through linear absorption is just enough to keep the residual light at the shot noise level (which is relatively stronger for weaker light).

Image

For modern websites to work according to visitor’s expectations, they need to collect certain basic information about visitors. To do this, a site will create small text files which are placed on visitor’s devices (computer or mobile) - these files are known as cookies when you access a website. Cookies are used in order to make websites function and work efficiently. Cookies are uniquely assigned to each visitor and can only be read by a web server in the domain that issued the cookie to the visitor. Cookies cannot be used to run programs or deliver viruses to a visitor’s device.

Various types of processes, which would in principle be avoidable, lead to extrinsic absorption for example in optical glasses, in nonlinear crystal materials and in laser crystals:

Impurities can also modify intrinsic absorption features – for example, shift the band gap energy and the corresponding absorption edge when a semiconductor compound is formed.

In order to use this website comfortably, we use cookies. For cookie details please see our cookie policy.

Notes for reflection oflight

Here you can submit questions and comments. As far as they get accepted by the author, they will appear above this paragraph together with the author’s answer. The author will decide on acceptance based on certain criteria. Essentially, the issue must be of sufficiently broad interest.

Occasionally, we may use internet tags (also known as action tags, single-pixel GIFs, clear GIFs, invisible GIFs and 1-by-1 GIFs) at this site and may deploy these tags/cookies through a third-party advertising partner or a web analytical service partner which may be located and store the respective information (including your IP-address) in a foreign country. These tags/cookies are placed on both online advertisements that bring users to this site and on different pages of this site. We use this technology to measure the visitors' responses to our sites and the effectiveness of our advertising campaigns (including how many times a page is opened and which information is consulted) as well as to evaluate your use of this website. The third-party partner or the web analytical service partner may be able to collect data about visitors to our and other sites because of these internet tags/cookies, may compose reports regarding the website’s activity for us and may provide further services which are related to the use of the website and the internet. They may provide such information to other parties if there is a legal requirement that they do so, or if they hire the other parties to process information on their behalf.

A general distinction is between intrinsic and extrinsic absorption. Extrinsic absorption (also sometimes called parasitic absorption) results from things which could in principle be avoided – for example, from impurities and structural defects which could be absent in pure high quality material. Intrinsic absorption results from basic properties of the pure material.

Certain type of cookies may require the data subject’s consent before storing them on the computer.

Linear absorption means that the absorption coefficient is independent of the optical intensity. There are also nonlinear absorption processes, where the absorption coefficient is a linear or higher-order function of the intensity. For example, two-photon absorption is a process where two photons are absorbed simultaneously, and the absorption coefficient rises linearly with the intensity. Multiphoton absorption processes of higher order are often involved in laser-induced damage caused by intense laser pulses.

If you wish to restrict or block web browser cookies which are set on your device then you can do this through your browser settings; the Help function within your browser should tell you how. Alternatively, you may wish to visit www.aboutcookies.org, which contains comprehensive information on how to do this on a wide variety of desktop browsers.

If absorption is caused by some absorbing dopant, the contribution to the absorption per dopant atom or ion is often quantified with an absorption cross-section.

More specific terms: infrared absorption, excited-state absorption, pump absorption, light-induced absorption, multiphonon absorption, multiphoton absorption, two-photon absorption, pump absorption

As light carries energy, the absorption of light is associated with the deposition of energy in the absorbing medium. In most cases, that energy is mostly converted into heat, although sometimes a substantial amount of the received energy is radiated away as fluorescence.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in this cookie policy. By closing the cookie warning banner, scrolling the page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.

In some special cases, nearly all of the absorbed light causes fluorescence rather than heat, and there can be even a net cooling effect (→ laser cooling). It may even happen that at some (typically longer) wavelengths one obtains laser amplification for strong enough excitation of the medium, usually involving a population inversion. The medium may then generate laser radiation which may remove a substantial fraction of the deposited energy.

Cookies help us help you. Through the use of cookies, we learn what is important to our visitors and we develop and enhance website content and functionality to support your experience. Much of our website can be accessed if cookies are disabled, however certain website functions may not work. And, we believe your current and future visits will be enhanced if cookies are enabled.

If absorption of light causes heating of the absorbing medium, that will subsequently lead to thermal expansion. The heating is often strongly inhomogeneous; for example, it may occur within a focused laser beam. The local thermal expansion then leads to mechanical stress in the medium, which can even result in fracture when the deposited thermal power or energy is sufficiently high. Further, the temperature causes a slight local modification of the refractive index, which (together with stress-related effects) can cause thermal lensing effects.

Cookies do various jobs which make the visitor’s experience of the internet much smoother and more interactive. For instance, cookies are used to remember the visitor’s preferences on sites they visit often, to remember language preference and to help navigate between pages more efficiently. Much, though not all, of the data collected is anonymous, though some of it is designed to detect browsing patterns and approximate geographical location to improve the visitor experience.

Further, the modified population in electronic states can substantially modify the absorption at the wavelength of the absorbed light and also at other wavelengths. It has already been mentioned above that absorption may be saturated. In other cases, light absorption is strongly increased by the light-induced changes in the state of matter. That is often exploited in laser material processing, where the initial absorption e.g. by a metal is weak, but strongly increases once the material is strongly excited (anomalous absorption). In various materials, one may obtain excited-state absorption at wavelengths where the material would normally not be absorbing. In semiconductors, at high intensities one obtains free carrier absorption.

If you don’t want to receive cookies, you can modify your browser so that it notifies you when cookies are sent to it or you can refuse cookies altogether. You can also delete cookies that have already been set.

As provided in this Privacy Policy (Article 5), you can learn more about opt-out cookies by the website provided by Network Advertising Initiative:

There are also many cases where a material contains some absorbing dopant while the host material itself exhibits only negligible absorption. This is the case for solid-state (doped-insulator) gain media.

You're headed to Hamamatsu Photonics website for US (English). If you want to view an other country's site, the optimized information will be provided by selecting options below.

Saturable absorption can also be considered as a kind of nonlinear absorption. Here, however, the absorption coefficient is reduced under the influence of intense light, e.g. because the starting electronic level for the light absorption is depleted.

If you would like more information about web tags and cookies associated with on-line advertising or to opt-out of third-party collection of this information, please visit the Network Advertising Initiative website http://www.networkadvertising.org.

The spectral irradiance of the EQ-99X-CAL-S is calibrated and traced to national standards. Compared to traditional calibrated light sources the EQ-99X-CAL-S features a more stable spectrum and longer lifetime.

Image

Absorption in a semi-transparent medium is usually quantified with an absorption coefficient, telling which fraction of the optical power is lost per unit length. The inverse of an absorption coefficient is called an absorption length. The absorption of a given length of material (e.g. of a plate with a certain thickness) can be quantified with an absorbance.

Non-transparent objects can be attributed an absorptance, which is the fraction of incident light which is absorbed rather than transmitted, reflected or scattered.

As absorption coefficients are wavelength-dependent, one often produces absorption spectra, showing an absorption coefficient as a function of wavelength or optical frequency.

In nonlinear absorption, does the laser pulse duration also affect the absorption coefficient alongside with the intensity?

It looks like you're in the . If this is not your location, please select the correct region or country below.

Image