Luo, Calvin. “Understanding Diffusion Models: A Unified Perspective.” arXiv, August 25, 2022. https://doi.org/10.48550/arXiv.2208.11970.

Galileo Galilei is sometimes cited as an inventor of the compound microscope. After 1610, he found that he could close-focus his telescope to view small objects such as flies and/or could look through the wrong end in reverse to magnify small objects.[10][11] The only drawback was that his telescope had to be extended out to six feet to view objects that close.[12]

Bright field dark field

Stability in Training: One of the perennial challenges with GANs is the instability during training, often leading to mode collapse. Diffusion models, with their iterative refinement approach, tend to be more stable and less prone to such pitfalls.

Another area of concern is the interpretability of these models. Given their stochastic nature and the complex interplay of noise and data, understanding precisely why a model made a particular decision or produced a specific output can be elusive.

Contrasting with traditional neural networks, which often rely on deterministic processes and fixed architectures, diffusion models embrace randomness. While conventional networks might take an input and produce an output through a series of transformations, diffusion models start with a noisy version of the target data and gradually refine it. This approach is distinct from other generative models like Generative Adversarial Networks (GANs) or Variational Autoencoders (VAEs). While GANs involve a game between two networks and VAEs use probabilistic encoders and decoders, diffusion models rely on a process that’s more akin to a random walk.

A diffusion model is a generative model that leverages stochastic processes to iteratively refine an initial random sample over multiple steps, simulating the way substances spread or diffuse over time. In the context of AI, it represents a blend of physics and artificial intelligence principles, producing data outputs through a series of guided random walks in a latent space.

Diffusion models, at their core, are a fascinating blend of physics and artificial intelligence principles. Originating from the study of how substances spread or diffuse through space and time, these models have found a unique and impactful place in the realm of AI.

The significance of diffusion models in AI cannot be understated. They offer a fresh perspective and approach to generative tasks, standing apart from traditional neural networks and other generative models. As we delve deeper into this topic, we’ll explore the journey of diffusion from its roots in physics modeling to its transformative role in artificial intelligence.

The light path of a bright-field microscope is extremely simple; no additional components are required beyond the normal light-microscope setup. The light path begins at the illuminator or the light source on the base of the microscope. Often a halogen lamp is used. The light travels through the objective lens into the ocular lens, through which the image is viewed. Bright-field microscopy may use critical or Köhler illumination to illuminate the sample.[16]

Controlled Generation: The step-by-step generation process of diffusion models allows for more control over the output. This is especially useful in tasks where specific attributes or features need to be emphasized or de-emphasized.

From the intricate dance of particles in a physical system to the generation of breathtaking visuals and sounds in the digital realm, the journey of diffusion models has been nothing short of remarkable. They stand as a testament to the power of interdisciplinary research, where principles from one domain breathe life into innovations in another.

A bright-field microscope has many important parts including; the condenser, the objective lens, the ocular lens, the diaphragm, and the aperture. Some other pieces of the microscope that are commonly known are the arm, the head, the illuminator, the base, the stage, the adjusters, and the brightness adjuster. The condenser of the microscope allows no extra light from the surroundings to interfere with the light path and condenses the light from the illuminator to make a uniform light path. The objective lens and the ocular lens work together, the ocular lens is ten times magnification and the ocular lens has different numbers by how much they can go up to, the highest being 400, the two together make up to 4,000x magnification. The aperture is a part of the diaphragm that controls the diameter of the beam passing through the sample at a time. The adjusters move the stage up and down towards the objective lens and the arm, head, and base.[15]

Dark field microscopy

Saharia, Chitwan, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, et al. “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding.” arXiv, May 23, 2022. https://doi.org/10.48550/arXiv.2205.11487.

Bright-field microscopy (BF) is the simplest of all the optical microscopy illumination techniques. Sample illumination is transmitted (i.e., illuminated from below and observed from above) white light, and contrast in the sample is caused by attenuation of the transmitted light in dense areas of the sample. Bright-field microscopy is the simplest of a range of techniques used for illumination of samples in light microscopes, and its simplicity makes it a popular technique. The typical appearance of a bright-field microscopy image is a dark sample on a bright background, hence the name.

Dhariwal, Prafulla, and Alex Nichol. “Diffusion Models Beat GANs on Image Synthesis.” arXiv, June 1, 2021. https://doi.org/10.48550/arXiv.2105.05233.

As promising as diffusion models are, they’re not without their challenges. One of the primary limitations is the computational cost. The iterative nature of these models, while powerful, can be resource-intensive, especially for high-resolution tasks. This makes real-time applications, like video game graphics or live audio synthesis, a challenge.

Fashion: Brands have experimented with diffusion models to come up with novel design patterns for apparel, tapping into the model’s ability to generate unique and aesthetically pleasing visuals.

Zhang, Chenshuang, Chaoning Zhang, Mengchun Zhang, and In So Kweon. “Text-to-Image Diffusion Models in Generative AI: A Survey.” arXiv, April 2, 2023. https://doi.org/10.48550/arXiv.2303.07909.

Christiaan Huygens, another Dutchman, developed a simple two-lens ocular system in the late 17th century that was achromatically corrected, and therefore a huge step forward in microscope development. The Huygens ocular is still being produced to this day, but suffers from a small field size and other minor disadvantages.

Audio synthesis is another domain where these models shine. From generating music tracks to synthesizing speech, diffusion models offer a level of granularity and control that’s hard to achieve with other techniques. Their iterative refinement process ensures that the generated audio is smooth, clear, and free from abrupt artifacts.

But how does a process so deeply rooted in physics find its way into the world of artificial intelligence? The answer lies in the parallels between the random movements of particles in diffusion and the behavior of data in high-dimensional spaces. Just as particles seek equilibrium in physical systems, data in AI models, especially generative ones, can be thought of as seeking an optimal distribution or representation. By leveraging the principles of diffusion, researchers and AI practitioners have found innovative ways to model data, leading to breakthroughs in generative tasks and beyond.

Diving into the mechanics, the heart of diffusion models lies in simulating this random walk in a latent space. Imagine a space where each point represents a possible data sample. The model starts at a random point (a noisy version of the target) and takes small, guided steps, with the aim of reaching a point that represents the desired output. Each step is influenced by the gradient of the data distribution, guiding the walk towards regions of higher likelihood.

Looking ahead, the potential of diffusion models is vast. They could revolutionize areas like virtual reality, with lifelike graphics generated on the fly, or personalized music, where tracks are synthesized in real-time based on the listener’s mood or surroundings. The fusion of diffusion models with other AI techniques, like reinforcement learning or transfer learning, could also open up new horizons.

Bright-field microscopes typically produce low contrast with most biological samples, as few absorb light to a great extent. Samples that are naturally colorless and transparent cannot be seen well, e.g. many types of mammalian cells. Staining is often required to increase contrast, which prevents use on live cells in many situations. Bright-field illumination is useful for samples that have an intrinsic color, for example mitochondria or the observation of cytoplasmic streaming in Chara cells.

In essence, diffusion models offer a fresh perspective on data generation, blending principles of physics with the power of AI, and opening doors to new possibilities in the world of generative tasks.

Rombach, Robin, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. “High-Resolution Image Synthesis with Latent Diffusion Models.” arXiv, April 13, 2022. https://doi.org/10.48550/arXiv.2112.10752.

Bright-field microscopy is a standard light-microscopy technique, and therefore magnification is limited by the resolving power possible with the wavelength of visible light. The practical limit to magnification with a light microscope is around 1300×. Higher magnifications are possible, but it becomes increasingly difficult to maintain image clarity as the magnification increases.[17] Bright-field microscopes have low apparent optical resolution due to the blur of out-of-focus material;

Alammar, Jay. “The Illustrated Stable Diffusion.” Accessed September 22, 2023. https://jalammar.github.io/illustrated-stable-diffusion/.

Bright-field microscopes are very simple to use and can be used to view both stained and unstained specimens. The optics do not change the color of the specimen, making it easy to interpret what is observed.

Diffusion models in the context of AI can be thought of as a series of generative models that leverage stochastic processes to produce data. Instead of directly generating an output, these models iteratively refine an initial random sample over multiple steps, much like how substances diffuse over time.

The mathematics behind diffusion is elegantly captured by Fick’s laws. At a high level, these laws describe the rate at which substances diffuse, taking into account the concentration gradient—the difference in concentration between two points. While the equations can dive deep into complexities, the primary takeaway is that the rate of diffusion is proportional to this gradient. The steeper the gradient, the faster the diffusion.

Sohl-Dickstein, Jascha, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. “Deep Unsupervised Learning Using Nonequilibrium Thermodynamics.” arXiv, November 18, 2015. https://doi.org/10.48550/arXiv.1503.03585.

Diversity in Outputs: While some generative models might get stuck producing similar-looking outputs, the inherent randomness in diffusion models ensures a diverse range of generated samples, capturing the breadth of the data distribution.

Diffusion models have carved a niche for themselves in the vast landscape of generative AI. Their unique approach to data generation has made them particularly suited for a range of tasks that require both precision and creativity.

Entertainment: From generating background music for indie games to creating concept art for movies, these models are becoming a staple in the creative process.

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Probabilistic Models.” In Advances in Neural Information Processing Systems, 33:6840–51. Curran Associates, Inc., 2020. https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html.

Healthcare: In medical imaging, diffusion models assist in enhancing low-resolution scans, making them clearer for diagnosis.

However, these challenges are also avenues for future research. As computational power continues to grow and algorithms become more efficient, the speed and resource concerns might become things of the past. On the interpretability front, there’s active research into making AI models, in general, more transparent, and diffusion models will undoubtedly benefit from these advancements.

Ananthaswamy, Anil. “The Physics Principle That Inspired Modern AI Art.” Quanta Magazine, January 5, 2023. https://www.quantamagazine.org/the-physics-principle-that-inspired-modern-ai-art-20230105/.

Diffusion models, with their unique blend of physics and AI, are poised to shape the next wave of generative AI. Their transformative potential, combined with ongoing research and advancements, ensures that they’ll remain at the forefront of AI innovation for years to come.

Compound microscopes first appeared in Europe around 1620.[2][3] The actual inventor of the compound microscope is unknown although many claims have been made over the years. These include a dubious claim that Dutch spectacle-maker Zacharias Janssen invented the compound microscope and the telescope as early as 1590.[4][5][6][7] Another claim is that Janssen's competitor Hans Lippershey, who applied for the first telescope patent in 1608, also invented the compound microscope.[8] Other historians point to the Dutch innovator Cornelis Drebbel who demonstrated a compound microscope in London around 1621.[9][3]

In the world of physics, diffusion processes describe the way particles move from regions of high concentration to areas of lower concentration, striving for equilibrium. This seemingly simple process is governed by intricate mathematical equations and principles. Fast forward to the modern age of technology, and these very principles have been adapted and transformed to serve as the foundation for some of the most advanced AI algorithms.

Wiggers, Kyle. “A Brief History of Diffusion, the Tech at the Heart of Modern Image-Generating AI.” TechCrunch (blog), December 22, 2022. https://techcrunch.com/2022/12/22/a-brief-history-of-diffusion-the-tech-at-the-heart-of-modern-image-generating-ai/.

Nichol, Alexander Quinn, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob Mcgrew, Ilya Sutskever, and Mark Chen. “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.” In Proceedings of the 39th International Conference on Machine Learning, 16784–804. PMLR, 2022. https://proceedings.mlr.press/v162/nichol22a.html.

One of the most prominent applications of diffusion models is in image generation. Whether it’s creating lifelike portraits, artistic landscapes, or even detailed objects, diffusion models have showcased their prowess in producing high-resolution and coherent images. Beyond static images, they’ve also been employed in video generation, adding temporal coherence to the mix.

Noise plays a pivotal role in this process. It’s the initial randomness, the starting point of our walk. As the model progresses through its steps, the level of noise decreases, allowing the data to emerge from the chaos and become more refined. This controlled reduction of noise over time is what enables the model to produce coherent and high-quality outputs.

Antonie van Leeuwenhoek (1632–1724) is credited with bringing the microscope to the attention of biologists, even though simple magnifying lenses were already being produced in the 16th century. Van Leeuwenhoek's home-made microscopes were simple microscopes, with a single very small, yet strong lens. They were awkward to use, but enabled van Leeuwenhoek to see detailed images. It took about 150 years of optical development before the compound microscope was able to provide the same quality image as van Leeuwenhoek's simple microscopes, due to difficulties in configuring multiple lenses. In the 1850s, John Leonard Riddell, Professor of Chemistry at Tulane University, invented the first practical binocular microscope while carrying out one of the earliest and most extensive American microscopic investigations of cholera.[13][14]

Diffusion, in the realm of physics, is a natural phenomenon that describes the passive spread of particles or substances. Imagine a drop of ink dispersing in a glass of water. Over time, the ink molecules move from an area of high concentration, where the drop was initially placed, to areas of lower concentration, eventually leading to a uniform distribution throughout the water. This movement, driven by the inherent desire for systems to reach a state of equilibrium, is the essence of diffusion.

Yang, Ling, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. “Diffusion Models: A Comprehensive Survey of Methods and Applications.” arXiv, March 23, 2023. http://arxiv.org/abs/2209.00796.

Neils Rogge and Kashif Rasul. “The Annotated Diffusion Model.” Accessed September 22, 2023. https://huggingface.co/blog/annotated-diffusion.

In summary, diffusion models, with their unique approach and advantages, are rapidly becoming a go-to choice for a myriad of generative tasks, pushing the boundaries of what’s possible in AI-driven content creation.