Tase me, bro! Airmen can opt for a training shock - do you have to get tased in the army
A Cartesian coordinate system is defined in terms of several oriented reference lines, called coordinate axes; any arbitrary direction can be represented numerically by finding the direction cosines (a list of cosines of the angles) between the given direction and the directions of the axes; the direction cosines are the coordinates of the associated unit vector.
directional中文
Note: you have to click on “Insert” button multiple times if want to insert the “Diameter” symbol multiple times within a cell.
Keyboard does not have this symbol key on it to directly insert it but in Excel, there are many ways to add this symbol into the cell.
Directionalcar
In geometry, direction, also known as spatial direction or vector direction, is the common characteristic of all rays which coincide when translated to share a common endpoint; equivalently, it is the common characteristic of vectors (such as the relative position between a pair of points) which can be made equal by scaling (by some positive scalar multiplier).
A direction is used to represent linear objects such as axes of rotation and normal vectors. A direction may be used as part of the representation of a more complicated object's orientation in physical space (e.g., axis–angle representation).
Direction
Two vectors sharing the same direction are said to be codirectional or equidirectional.[1] All codirectional line segments sharing the same size (length) are said to be equipollent. Two equipollent segments are not necessarily coincident; for example, a given direction can be evaluated at different starting positions, defining different unit directed line segments (as a bound vector instead of a free vector).
As we have used the word “Dia” to replace it with “Diameter” symbol so now onwards, the moment you will enter “Dia” word within the cell, it will get converted into “Diameter” symbol.
Directionality
Excel Champs is one of the top Excel blogs where you can find some of the most amazing tutorials on Excel basics, formulas, VBA, charts, and much more...
A two-dimensional direction can also be represented by its angle, measured from some reference direction, the angular component of polar coordinates (ignoring or normalizing the radial component). A three-dimensional direction can be represented using a polar angle relative to a fixed polar axis and an azimuthal angle about the polar axis: the angular components of spherical coordinates.
Two directions are obtuse or acute if they form, respectively, an obtuse angle (greater than a right angle) or acute angle (smaller than a right angle); equivalently, obtuse directions and acute directions have, respectively, negative and positive scalar product (or scalar projection).
Non-oriented straight lines can also be considered to have a direction, the common characteristic of all parallel lines, which can be made to coincide by translation to pass through a common point. The direction of a non-oriented line in a two-dimensional plane, given a Cartesian coordinate system, can be represented numerically by its slope.
A direction is often represented as a unit vector, the result of dividing a vector by its length. A direction can alternately be represented by a point on a circle or sphere, the intersection between the sphere and a ray in that direction emanating from the sphere's center; the tips of unit vectors emanating from a common origin point lie on the unit sphere.
Two directions are said to be opposite if the unit vectors representing them are additive inverses, or if the points on a sphere representing them are antipodal, at the two opposite ends of a common diameter. Two directions are parallel (as in parallel lines) if they can be brought to lie on the same straight line without rotations; parallel directions are either codirectional or opposite.[1][a]