Illumination Logo - LogoDix - illumination logo history
By providing your details you are opting-in to receiving our newsletter, which contains information about our products and services, and news on the machine vision industry. We will not share your information with any other organisations and you will not receive communication from anyone other than Active Silicon. We may, from time to time, send emails other than the newsletter which we will believe will be of interest to you concerning our products and services. You may at any time change your preferences or opt-out of receiving these emails by using the link at the bottom of each email.
Founded in 1988, Active Silicon has a proven track record in providing reliable, high quality products for a variety of industries worldwide. Our products have applications in many areas of science and industry, including manufacturing, life sciences, medical imaging, security and defense. From space missions to large scale deployment of industrial vision systems, we have provided imaging components and embedded systems that help our customers provide world-class solutions.
Grating applicationsLight incident on a diffraction grating is dispersed away from the grating surface at an angle dependent on its wavelength, allowing a grating to be used to select a narrow spectral band from a much wider band. This ability of a grating is particularly useful for laser tuning, especially in the visible region of the spectrum. Two primary configurations for selecting a narrow wavelength are Littrow and Littman. In the Littrow configuration, the wavelength of interest diffracts at exactly the same angle as the light incident on the grating. Littrow tuning is done either with fine-pitch first-order gratings (typically 1800 or 2400 grooves/mm, either ruled or holographic) or a coarser grating used in higher orders. The alternative approach is to use the grating in a fixed grazing incidence mode together with a rotating reflecting mirror. Pairs of diffraction gratings can also be used to compress or stretch a laser pulse. When a spectrally broad laser pulse is incident on a diffraction grating, the various wavelengths that make up the pulse will diffract from the grating at angles determined by those wavelengths. If the pulse is chirped so that the frequency changes linearly during the length of the pulse, then diffraction will spread the pulse out across the second grating. When the light diffracts from the second grating, which is oriented parallel to the first grating, the different parts of the pulse will diffract at angles that yield a pulse whose parts are synchronized. This increases the peak power while the total energy remains the same. Pulse compression uses two gratings with the same groove frequency and efficiencies peaked for the polarization and wavelength of the laser. If the gratings are arranged in a nonparallel arrangement, a pulse can be stretched. Pulse stretching uses two identical gratings, allowing lower peak power to be transmitted through the laser system and increasing the amount of stored energy that can be extracted. Since the invention of the replication technique, diffraction gratings have replaced prisms in many commercial spectrometers. A prism will bend short wavelengths more than longer ones (see Laser Focus World, Jan. 1997, p. 101). Prisms that transmit visible light absorb most UV and infrared wavelengths, whereas reflection gratings can be suitably coated for high reflectivity in wide spectral regions. Gratings are considered superior to prisms in many applications. Seeking to combine the best of both, Richardson Grating Laboratory has fabricated a "grism," a part-grating, part-prism optical element useful in spectrometers that require in-line presentation of the spectrum, as in astronomy. The light diffracted by the grating is bent back in line by the refracting effect of the prism. The dispersion of the grism is not linear, because the dispersive effects of the prism and grating are superimposed.New fabrication techniquesKaiser Optical Systems Inc. (KOSI; Ann Arbor, MI), has developed an alternative to the classical or surface-relief holographic grating--the volume transmission holographic grating (see photo at top of this page; also Laser Focus World, Oct. 1995, p. 95). The grating is created in the traditional manner by recording interference patterns generated by two mutually coherent laser beams. After the pattern is defined in the photosensitive material, coated on glass, and the film developed, a top layer of glass is added, creating a totally transparent grating assembly. Light strikes the grating on one side and diffracts out through the other.An advantage of a transmission volume grating is its relative insensitivity to angle, says James Arns of KOSI. A Bragg-type structure follows the classical grating equation concerning image position but with the added ability to adjust the intensity profile over a range of wavelengths. To describe the capability, Arns compares a Venetian blind to lines painted on a window. When the blind is positioned with the slats horizontal, it diffracts light in the same way as the painted lines or a surface-relief grating. When the slats are angled, the element of depth is added to how the light is diffracted. Because of this added dimension, the grating efficiency can be adjusted over the wavelength bandwidth to favor one side or the other. Also, the low sensitivity to incidence angle means the grating can be angularly tuned without influencing the image position."It also has a high efficiency," says Arns. "Depending on the configuration, the grating can produce 90% efficiency in the first order. If the thickness or the frequency of the grating is high enough, higher orders that otherwise might be propagated are extinguished." Another advantage, says Arns, is that the element can be handled and cleaned in the same fashion as a high-quality cemented lens because the grating is sandwiched between two layers of glass. Also, because the Bragg-type grating is a transmission device, optical elements and instruments can be brought close to it, resulting in a compact design.Holoplexing, a technique devised by KOSI in which two gratings are placed together in the same structure to cover multiple spectral ranges at one time, is useful for imaging on charge-coupled-device (CCD) cameras for broadband applications. Holographic transmission gratings are also used in Raman spectroscopy and for pulse compression in ultrafast lasers.Holographic gratings can also be made from computer-generated interference patterns. The patterns are written onto a chrome mask using an electron-beam machine. The patterns on the mask are then etched into a material, such as fused silica, using photolithographic masking and etching techniques. "Computer-generated gratings have really just reached maturity within the last two years," says Michael Feldman, of Digital Optics Corp. (Charlotte, NC). "They are very flexible and easy to mass-produce." Their versatility offers many advantages. "Ruled and holographic gratings are limited to relatively simple structures by the fabrication methods that are used," says W. Hudson Welch, also of Digital Optics. "The flexibility provided by computer-generated gratings allows the creation of essentially arbitrary grating patterns."Fiber gratingsFiber Bragg gratings, another recent development in grating applications, are made within a fiberoptic cable. Fiber gratings are fabricated by exposing the core of a single-mode fiber, 8 to 10 µm thick, to a periodic pattern of intense ultraviolet light. This pattern is created when a 248- or 193-nm laser passes through a special diffractive phase mask. When a fiber is placed in the intense UV light pattern of the mask, a permanent modulation of the index of refraction is generated in the fiber core. This photo-generated index modulation acts as a grating. Light traveling along the fiber core impinges on the grating, and each area of different refractive index scatters a small portion of the beam. If the wavelength of the signal is twice the distance between the periodic refractive elements (typically <1 µm), then the signals scattered back down the fiber core will add constructively to give a large reflection. The wavelength at which the reflection occurs is the Bragg wavelength. A Bragg grating can operate at precise wavelengths that can be accurately preset and maintained, says Keith Brundin at 3M Specialty Optical Fibers (West Haven, CT).There are also long-period fiber gratings that have index modulations with periods of hundreds of microns (see Laser Focus World, June 1996, p. 293). Instead of producing a reflected signal, these gratings create a phase-matching, or Bragg, condition that couples a forward-traveling signal into forward-traveling cladding modes. The signals coupled into the cladding are absorbed by the coating, creating a loss. Long-period gratings thus act as wavelength-selective absorption filters and are used in wavelength-division-multiplexing networks and in gain-shaping filters for rare-earth-doped fiber amplifiers. Fiber Bragg gratings have been commercially available only since 1995. They are becoming increasingly popular in telecommunications and the laser industry for such applications as external reflectors for stabilizing semiconductor lasers (see Fig. 4) and single- frequency fiber lasers.
Unlike optical zoom, which adjusts the lens physically to magnify the image, digital zoom works by digitally enlarging and cropping a portion of the image. Essentially, it increases the magnification of the image by interpolation (estimating a new pixel’s intensity based on neighboring pixel values). This estimation results in lower image quality and less detail than with optical zoom.
There has been a surge in demand for high-quality imaging solutions across many industries, from medical applications to UAVs, and everything in between. For most of these solutions, flexible and responsive zoom options are often critical.
Fiber Bragg gratings, another recent development in grating applications, are made within a fiberoptic cable. Fiber gratings are fabricated by exposing the core of a single-mode fiber, 8 to 10 µm thick, to a periodic pattern of intense ultraviolet light. This pattern is created when a 248- or 193-nm laser passes through a special diffractive phase mask. When a fiber is placed in the intense UV light pattern of the mask, a permanent modulation of the index of refraction is generated in the fiber core. This photo-generated index modulation acts as a grating.
While both digital zoom and optical zoom serve the purpose of magnifying images, they differ significantly in terms of image quality and application suitability.
Optical zoom is particularly beneficial in scenarios where image quality is paramount, such as surveillance applications, requiring detailed identification, and industrial inspection, where precision is critical to guarantee quality. By preserving the integrity of the image, optical zoom ensures that users can accurately capture finer details even at a high distance.
Pairs of diffraction gratings can also be used to compress or stretch a laser pulse. When a spectrally broad laser pulse is incident on a diffraction grating, the various wavelengths that make up the pulse will diffract from the grating at angles determined by those wavelengths. If the pulse is chirped so that the frequency changes linearly during the length of the pulse, then diffraction will spread the pulse out across the second grating. When the light diffracts from the second grating, which is oriented parallel to the first grating, the different parts of the pulse will diffract at angles that yield a pulse whose parts are synchronized. This increases the peak power while the total energy remains the same. Pulse compression uses two gratings with the same groove frequency and efficiencies peaked for the polarization and wavelength of the laser.
"It also has a high efficiency," says Arns. "Depending on the configuration, the grating can produce 90% efficiency in the first order. If the thickness or the frequency of the grating is high enough, higher orders that otherwise might be propagated are extinguished." Another advantage, says Arns, is that the element can be handled and cleaned in the same fashion as a high-quality cemented lens because the grating is sandwiched between two layers of glass. Also, because the Bragg-type grating is a transmission device, optical elements and instruments can be brought close to it, resulting in a compact design.
Harrier AF-Zoom Cameras achieve their powerful zoom using a hybrid optical system. This means that the camera first uses optical zoom to magnify the image without sacrificing quality. Once the optical zoom limit is reached, the camera can then switch to digital zoom to further increase magnification, although some loss in image quality may occur.
Light traveling along the fiber core impinges on the grating, and each area of different refractive index scatters a small portion of the beam. If the wavelength of the signal is twice the distance between the periodic refractive elements (typically <1 µm), then the signals scattered back down the fiber core will add constructively to give a large reflection. The wavelength at which the reflection occurs is the Bragg wavelength. A Bragg grating can operate at precise wavelengths that can be accurately preset and maintained, says Keith Brundin at 3M Specialty Optical Fibers (West Haven, CT).
Fixed central zoom field: Optical zoom narrows the field of view (FOV) of the lens system, and only zooms in and out of the center of the field of view. If better precision is needed in portions of the peripheral FOV, then a separate pan and tilt system are also required to change the orientation of the entire camera. A digital zoom can be applied to any region of the camera view, and both views can be displayed simultaneously.
Electronic zoomcamera
Holoplexing, a technique devised by KOSI in which two gratings are placed together in the same structure to cover multiple spectral ranges at one time, is useful for imaging on charge-coupled-device (CCD) cameras for broadband applications. Holographic transmission gratings are also used in Raman spectroscopy and for pulse compression in ultrafast lasers.
Electronic zoomapp
Light incident on a diffraction grating is dispersed away from the grating surface at an angle dependent on its wavelength, allowing a grating to be used to select a narrow spectral band from a much wider band. This ability of a grating is particularly useful for laser tuning, especially in the visible region of the spectrum. Two primary configurations for selecting a narrow wavelength are Littrow and Littman. In the Littrow configuration, the wavelength of interest diffracts at exactly the same angle as the light incident on the grating. Littrow tuning is done either with fine-pitch first-order gratings (typically 1800 or 2400 grooves/mm, either ruled or holographic) or a coarser grating used in higher orders. The alternative approach is to use the grating in a fixed grazing incidence mode together with a rotating reflecting mirror.
In 1882, Henry A. Rowland invented the process of ruling, or scratching parallel notches into metal deposited onto the surface of a flat, clear glass plate—a method that produced gratings of exceptionally high quality. Modern ruled gratings can be either reflective or transmissive and are fabricated with a single diamond point that burnishes grooves on flat or concave surfaces.
Opticalzoomcamera
However, recent developments in software have enhanced digital zoom capabilities and more sophisticated algorithms mean that interpolation is more accurate. Digital zoom is also less of a problem if the camera image is downscaled from an image captured using a very high resolution sensor. In this case, when the image is digitally zoomed increased levels of detail can be obtained from the higher resolution image captured by the sensor.
Holographic gratings can also be made from computer-generated interference patterns. The patterns are written onto a chrome mask using an electron-beam machine. The patterns on the mask are then etched into a material, such as fused silica, using photolithographic masking and etching techniques. "Computer-generated gratings have really just reached maturity within the last two years," says Michael Feldman, of Digital Optics Corp. (Charlotte, NC). "They are very flexible and easy to mass-produce."
Joseph Fraunhofer first used diffraction gratings in 1819 to observe the spectrum of the sun. Earliest devices were multiple-slit assemblies, consisting of a grid of fine wire or thread wound about and extending between two parallel screws, which served as spacers. A wavefront that passed through the system was confronted by alternate opaque and transparent regions, so that it underwent a modulation in amplitude.
Electronic zoomamazon
Optical zoom functions by adjusting the physical focal length of the lens, thereby magnifying the image without sacrificing quality. To zoom in, the lens moves, narrowing the field of view and magnifying the scene. Optical zoom captures more detail by actually bringing the subject closer optically, unlike digital zoom, which relies on digital manipulation. This results in sharper, clearer images with no loss of resolution.
Since the invention of the replication technique, diffraction gratings have replaced prisms in many commercial spectrometers. A prism will bend short wavelengths more than longer ones (see Laser Focus World, Jan. 1997, p. 101). Prisms that transmit visible light absorb most UV and infrared wavelengths, whereas reflection gratings can be suitably coated for high reflectivity in wide spectral regions. Gratings are considered superior to prisms in many applications. Seeking to combine the best of both, Richardson Grating Laboratory has fabricated a "grism," a part-grating, part-prism optical element useful in spectrometers that require in-line presentation of the spectrum, as in astronomy. The light diffracted by the grating is bent back in line by the refracting effect of the prism. The dispersion of the grism is not linear, because the dispersive effects of the prism and grating are superimposed.
Digital zoom is well-suited for situations where immediate magnification is necessary, and image quality can be sacrificed to some extent. These include video conferencing, and real-time monitoring systems such as patient monitoring, where reactive zoom capabilities are valued over image clarity. Zooming in on a specific region of the field of view will result in pixelation, particularly if there is a significant amount of digital magnification.
Bestelectronic zoom
There are also long-period fiber gratings that have index modulations with periods of hundreds of microns (see Laser Focus World, June 1996, p. 293). Instead of producing a reflected signal, these gratings create a phase-matching, or Bragg, condition that couples a forward-traveling signal into forward-traveling cladding modes. The signals coupled into the cladding are absorbed by the coating, creating a loss. Long-period gratings thus act as wavelength-selective absorption filters and are used in wavelength-division-multiplexing networks and in gain-shaping filters for rare-earth-doped fiber amplifiers.
Optical zoom is usually preferred in applications where image quality is imperative and detailed visualization is essential. This includes professional surveillance systems requiring precise identification, and industrial inspections where capturing fine details is crucial for analysis and decision-making. Optical zoom is also a better choice for applications that require reliable performance in low light or changing light conditions.
Since it merely enlarges the image using the existing pixels, without capturing additional detail, digital zoom is best suited for situations where high-resolution images are not essential, where immediate magnification is required but precise detail may not be critical.
Digitalzoomapp
Our most powerful model, the Harrier 55x AF-Zoom Camera, is slightly different because it uses a higher resolution sensor, so the initial digital zoom is merely reducing the downscaling to the point where the zoomed image can be directly cropped out of the higher resolution image.
When selecting a camera for your application, you will probably see the optical zoom and/or digital zoom capabilities of the camera listed in the specification (often both). But what do these actually mean, and how do they impact your choice?
If the gratings are arranged in a nonparallel arrangement, a pulse can be stretched. Pulse stretching uses two identical gratings, allowing lower peak power to be transmitted through the laser system and increasing the amount of stored energy that can be extracted.
Kaiser Optical Systems Inc. (KOSI; Ann Arbor, MI), has developed an alternative to the classical or surface-relief holographic grating--the volume transmission holographic grating (see photo at top of this page; also Laser Focus World, Oct. 1995, p. 95). The grating is created in the traditional manner by recording interference patterns generated by two mutually coherent laser beams. After the pattern is defined in the photosensitive material, coated on glass, and the film developed, a top layer of glass is added, creating a totally transparent grating assembly. Light strikes the grating on one side and diffracts out through the other.
"The grooves are similar to the indentations made by a plow in soil," says John Hoose of Richardson Grating Laboratory (Rochester, NY), except that they are much closer together. Anywhere from one to 10,000 fine parallel lines per millimeter can be engraved. Light waves diffracted from these lines interfere, and all wavelengths but one are canceled in any particular direction through destructive interference. The depth of the groove changes the wavelength of the light wave being diffracted.
The author wishes to thank John Hoose of Richardson Grating Laboratory (Rochester, NY) for his help in preparing this article.
Diffraction gratings are fundamental optical elements that have a precise pattern of grooves superimposed on them. These minute, periodic structures diffract, or disperse, incident light in such a way that the individual wavelengths making up the incident light can be differentiated. Gratings are indispensable in helping physicists determine the structure of atoms or helping astronomers calculate the chemical composition of stars and the rotation of galaxies. Applications are expanding; one of the fastest growing areas for gratings—laser pulse compression—didn’t even exist until a few years ago.
Our Harrier autofocus-zoom cameras all incorporate a lens system for optical zoom and image processing for digital zoom, allowing users to adjust magnification both optically and digitally.
An advantage of a transmission volume grating is its relative insensitivity to angle, says James Arns of KOSI. A Bragg-type structure follows the classical grating equation concerning image position but with the added ability to adjust the intensity profile over a range of wavelengths. To describe the capability, Arns compares a Venetian blind to lines painted on a window. When the blind is positioned with the slats horizontal, it diffracts light in the same way as the painted lines or a surface-relief grating. When the slats are angled, the element of depth is added to how the light is diffracted. Because of this added dimension, the grating efficiency can be adjusted over the wavelength bandwidth to favor one side or the other. Also, the low sensitivity to incidence angle means the grating can be angularly tuned without influencing the image position.
Their versatility offers many advantages. "Ruled and holographic gratings are limited to relatively simple structures by the fabrication methods that are used," says W. Hudson Welch, also of Digital Optics. "The flexibility provided by computer-generated gratings allows the creation of essentially arbitrary grating patterns."
Optical zoom offers greater resolution than digital zoom but is limited by the quality of the physical optics of the camera lens. Digital zoom enlarges an image using digital processing but generally results in a lower image quality.
Active Silicon, a Solid State plc group company, is a specialist manufacturer of imaging products and embedded vision systems. We provide cameras and camera electronics for image data transmission, frame grabbers for data acquisition, and embedded systems for imaging processing and machine control.
Which is better opticalzoomor digitalzoom
Size and weight: due to the requirement to motorize the position of certain lens elements, optical zoom lenses are typically larger and heavier than the fixed lenses used with digital zoom. Therefore, optical zoom lenses may be less suited to embedded applications which require compact, lightweight hardware.
US-based industrial technology solutions provider AMETEK has announced the acquisition of Virtek Vision International, a…
Furthermore, digital zoom can struggle in low-light conditions. This is because digitally magnifying a poor, low-light image just makes the reduced quality more visible.
Commercial surface-relief gratings are produced using an epoxy casting replication process developed in the mid-1900s. The process involves pouring a liquid into a mold, allowing the liquid to harden, and then removing the hardened material from the mold without damaging either. The replication process yields a grating that is an optically identical copy of the original. The two basic types of grating masters are ruled and interference.
The choice between using digital zoom or optical zoom ultimately depends on the specific requirements of the application.
Opticalzoomvs digitalzoomiPhone
Cost and complexity: Optical zoom lenses often cost more than their fixed counterparts, because they include moveable optics and a motorized system to allow control of the optical zoom.
The concept of diffraction gratings is simple, yet elegant. For more than one hundred years, they have been used in dispersive optical systems. Applications for gratings are expanding as the fabrication technology grows. Fields as diverse as telecommunications, astronomy, microlithography, lasers, and metal analysis are driving these changes.
One drawback of optical zoom is that, as the image is magnified, the amount of light received by the sensor is reduced. The Automatic Exposure in modern cameras can usually compensate very well for this (by changing gain, shutter speed and iris settings) but it may be an issue with darker scenes and cheaper low sensitivity sensors.
While this may also be an issue with optical zoom, with digital zoom a bad image (with low detail due to low light) is just being made bigger so it looks worse, even though no additional noise is added. With optical zoom the camera can compensate to some extent by adjusting iris and shutter speed settings to capture more detail.
All our cameras, including Harrier, Tamron and Sony models, are compatible with our Harrier Camera Interface Boards to increase the output options of the cameras. We therefore offer 10x to 55x optical zoom cameras with LVDS, 3G-SDI, USB3, HDMI and Ethernet IP video outputs. All these cameras also include a digital zoom capability; find more information in the product listings.
Take a look at the full range and get in touch to see which Harrier AF-Zoom Camera is best suited to your vision system.