LEDBacklight for TV that changes with picture

The CMOS process that has only recently been used to produce image sensors is the same technology that is used to create the image processing circuitry. Because of this, it is possible to integrate the image sensor and the image processing circuitry onto the same physical device.

Image

LEDStrip lights

CCD works much like a line of buckets where the water in each bucket gets poured into the next bucket. At the end of the line would be a large measuring cup that tells us how much water has been poured in from the last bucket. This information is then recorded and the water keeps moving down the chain until the amount of water in each bucket is recorded (see Fig. 3).

The basis of camera technology is a light-sensitive material that can reproduce an image (see Fig. 1). In a conventional camera the film is composed of Silver-Halide crystals suspended in gelatin — the same gelatin that Jell-O is made from [1]. In digital cameras this material is silicon, the same material used to make other electronics such as microprocessors. Silicon is a solid-state semiconductor that is refined from normal sand. Since its operation does not rely on a chemical reaction as conventional film does, a digital image sensor can be used repeatedly.

Backlight lighting

At the time of writing, Kenneth Newton was a senior graduating with a B.S. in Electrical Engineering from the University of Southern California. He will be continuing his education at the University of Southern California as a Ph.D. student in the Electrophysics Department of Electrical Engineering.

Image

The color filter array is the most commonly used method in commercial digital camera applications. The CFA looks like a checkerboard with three colors instead of two (see Fig. 2). Each square of the checkerboard sits exactly over one pixel so that only one light color can pass through. Since our eyes are most sensitive to green, the popular pattern, called the Bayer pattern, allows more green light to pass through than red light or blue light. If the pattern is not properly aligned, the device will not work properly. Since each pixel is only exposed to one color, the signal processing for this method is more complicated than in the other methods. In other implementations the entire image is captured separately in each color which gives more exact coloration to the picture, but with CFA each pixel is dedicated to only one color. The CFA method still produces color well enough that the human eye does not notice a diminished color quality. In any given square of four pixels, all the colors are detected. The likelihood of color information changing brightness in large amounts for any two points next to each other is small, so data from nearby pixels can be reasonably factored in to create an accurate picture.