Can i put a dslr on it? is it possible to mount one on there? saw a video and they were using larger cameras but curious on the usage of a dslr ?

Buonasera, ho un problema con una batteria acquistata il 21/10/2021 numero 68557475 fattura n° 1508068, messa in ricarica lampeggia spia gialla e non parte motore. alimentatore dell'apparecchio è buono. Visto il poco tempo passato dall'acquisto richiederei sostituzione. attendo un vostro riscontro. distinti saluti. Good evening, I have a problem with a battery purchased on 21/10/2021 number 68557475 invoice n ° 1508068, when recharging the yellow light flashes and the engine does not start. appliance power supply is good. Given the short time passed since the purchase, I would request replacement. I await your feedback. With best regards.

About the ebike battery. You bought this item to use, so use it. Batteries like that can be rebuilt and considering that it costs $1000, likely much cheaper than a new would cost and worthwhile to investigate. I do this for my drill batteries and you may want to do the same- if you're storing the bike keep the state of charge at like 75% or less. Charge it up to 90%+ when you are going to use it. The level of discharge is more of a function of use than a real choice you make. I try to charge my drill batteries before they run out, hopefully by around 25% but it's use and we can't really control that.

LiFePO4 batterycharging

Yes, absolutely. We always backup our sales. In case, you don't like the product, we take it back within 30 days and you get a 100% refund.

Similar to a mechanical device that wears out faster with heavy use, the depth of discharge (DoD) determines the cycle count of the battery. The smaller the discharge (low DoD), the longer the battery will last. If at all possible, avoid full discharges and charge the battery more often between uses. Partial discharge on Li-ion is fine. There is no memory and the battery does not need periodic full discharge cycles to prolong life. The exception may be a periodic calibration of the fuel gauge on a smart battery or intelligent device(See BU-603: How to Calibrate a “Smart” Battery)

The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.

In 2020, small wearable batteries deliver about 300 cycles whereas modern smartphones have a cycle life requirement is 800 cycles and more. The largest advancements are made in EV batteries with talk about the one-million-mile battery representing 5,000 cycles.

The lithium-ion battery works on ion movement between the positive and negative electrodes. In theory such a mechanism should work forever, but cycling, elevated temperature and aging decrease the performance over time. Manufacturers take a conservative approach and specify the life of Li-ion in most consumer products as being between 300 and 500 discharge/charge cycles.

Li-ion protection circuit

Context: I'm working on a project that uses an 18650 cell as battery backup to power a small processor, where line power is available almost all the time; running off the batteries would be the exception. Request: Since battery backup systems don't follow the typical charge/discharge pattern, it would be great to see an article specifically focused "best practices for battery backup applications".

A laptop battery could be prolonged by lowering the charge voltage when connected to the AC grid. To make this feature user-friendly, a device should feature a “Long Life” mode that keeps the battery at 4.05V/cell and offers a SoC of about 80 percent. One hour before traveling, the user requests the “Full Capacity” mode to bring the charge to 4.20V/cell.

Lithium-ion suffers from stress when exposed to heat, so does keeping a cell at a high charge voltage. A battery dwelling above 30°C (86°F) is considered elevated temperature and for most Li-ion a voltage above 4.10V/cell is deemed as high voltage. Exposing the battery to high temperature and dwelling in a full state-of-charge for an extended time can be more stressful than cycling. Table 3 demonstrates capacity loss as a function of temperature and SoC.

Image

Li-ion Battery Charger

accubattery analyzed the graph from this page https://accubattery.zendesk.com/hc/en-us/articles/360016286793-Re-Modeling-of-Lithium-Ion-Battery-Degradation-for-Cell-Life-Assessment

Lithium-ion charge Chemistry

Image

Modern laptops run cooler than older models and reported fires are fewer. Always keep the airflow unobstructed when running electric devices with air-cooling on a bed or pillow. A cool laptop extends battery life and safeguards the internal components. Energy Cells, which most consumer products have, should be charged at 1C or less. Avoid so-called ultra-fast chargers that claim to fully charge Li-ion in less than one hour.

* Similar life cycles apply for batteries with different voltage levels on full charge.** Based on a new battery with 100% capacity when charged to the full voltage.

In order to use the Comfort Arm & Vest with the DJI Ronin SC3, you will need to use the customized FLYCAM Arm and Vest Gimbal Adapter FLCM-GA having 19mm diameter.

After 3 years how to extend the initial research battery7, finding that the depth of life, you can discharge up to 2, and for you to have an idea, a smartphone turned off. when it is at 3.5 volts. that wears out is carrying at high loads o. every 0.10 volts doubles the cycles, if charging to 4.20 volts it lasts 500 cycles, 4.10v 1000 cycles and so on, on this site it doesn't show how many cycles are 3.8 volts, but a guy tested it and 8000 cycles, double 3.9 volts is 4000 and 3.7v 16000 cycles! You can test it now, start discharging the battery to 0%, you will notice a significant improvement in your performance. I've been using it down to 0% for 6 months now and the battery health hasn't dropped and my phone is 2 and a half years old, imagine if I did this from day one.

The following tables indicate stress related capacity losses on cobalt-based lithium-ion. The voltages of lithium iron phosphate and lithium titanate are lower and do not apply to the voltage references given.

Eleven new Li-ion were tested on a Cadex C7400 battery analyzer. All packs started at a capacity of 88–94% and decreased to 73–84% after 250 full discharge cycles. The 1500mAh pouch packs are used in mobile phones.

\"The customer has a comfort arm and vest and he wants to attach DJI Ronin SC3 gimbal with it. Please confirm it is possible\"

The lightweight, dynamic Comfort Arm is designed to carry payloads up to 5kg/11lb and optimize performance throughout its lifting range.The arm absorbs all jerks, bumps and shakes on even the roughest terrains while you walk or even run.Spring Tension Adjustment Knob easily adjusts the tension of the spring depending upon the weight of the setup.The Stainless-Steel Spring and high-quality bearings in the arm provide for an Ultra Smooth shot while you follow the subject.

A device with Lithium batteries (especially Li-ion & Li-Polymer/LiPo) should not be left connected to chargers for >1 month unattended. Some cheaper chargers are less safe eg. ebikes, escooter, boards & toys. Some devices/chargers stipulate a maximum time for having the charger connected (ofcourse the charger is powered while connected). Notebooks have better battery chargers but you should check atleast monthly for any warping or overheating once you notice the capacity is <60% of original. LiFePO4 are safer for upto 70°C instead of 60°C, & piercing doesn't cause fire. The cells with nominal >3.6V & charged to >4.1V (as I 1st mentioned above) are all dangerous when pierced & more sensitive to heat.

On the negative side, a lower peak charge voltage reduces the capacity the battery stores. As a simple guideline, every 70mV reduction in charge voltage lowers the overall capacity by 10 percent. Applying the peak charge voltage on a subsequent charge will restore the full capacity.

Lithiumion chargingcircuit

The performance of a battery is measured in capacity, a leading health indicator. Internal resistance and self-discharge also play roles, but these are less significant in predicting the end of battery life with modern Li-ion.

Battery research is focusing on lithium chemistries so much that one could imagine that the battery future lies solely in lithium. There are good reasons to be optimistic as lithium-ion is, in many ways, superior to other chemistries. Applications are growing and are encroaching into markets that previously were solidly held by lead acid, such as standby and load leveling. Many satellites are also powered by Li-ion.

Overview of multi stagechargingstrategies for Li-ion batteries

After 3 years how to extend the initial research battery7, finding that the depth of life, you can discharge up to 2, and for you to have an idea, a smartphone turned off. when it is at 3.5 volts. that wears out is carrying at high loads o. every 0.10 volts doubles the cycles, if charging to 4.20 volts it lasts 500 cycles, 4.10v 1000 cycles and so on, on this site it doesn't show how many cycles are 3.8 volts, but a guy tested it and 8000 cycles, double 3.9 volts is 4000 and 3.7v 16000 cycles! You can test it now, start discharging the battery to 0%, you will notice a significant improvement in your performance. I've been using it down to 0% for 6 months now and the battery health hasn't dropped and my phone is 2 and a half years old, imagine if I did this from day one.

Figure 6 illustrates dynamic stress tests (DST) reflecting capacity loss when cycling Li-ion at various charge and discharge bandwidths. The largest capacity loss occurs when discharging a fully charged Li-ion to 25 percent SoC (black); the loss would be higher if fully discharged. Cycling between 85 and 25 percent (green) provides a longer service life than charging to 100 percent and discharging to 50 percent (dark blue). The smallest capacity loss is attained by charging Li-ion to 75 percent and discharging to 65 percent. This, however, does not fully utilize the battery. High voltages and exposure to elevated temperature is said to degrade the battery quicker than cycling under normal condition. (Nissan Leaf case)

After 3 years of researching how to extend lithium battery, I found that the depth of discharge is a myth, it has zero effect on life, you can discharge up to 2.75 volts without wear and tear, a smartphone turns off when it is at 3.5 volts. what wears out is charging at high voltages. every 0.10 volts doubles the cycles, if charging up to 4.20 volts it lasts 500 cycles, 4.10v 1000 cycles and so on, on this site it doesn't show how many cycles it's 3.8 volts, but a guy tested it and it's 8000 cycles , 3.9 volts is 4000, and 3.7v is 16000 cycles! You can test it now, start discharging the battery to 0%, you will notice a significant improvement in your performance. I've been using it down to 0% for 6 months now and the battery health hasn't dropped at all and my phone is 2 and a half years old. source:https://accubattery.zendesk.com/hc/en-us/articles/212988989-Re-Battery-University-article-BU-808 https://www.powerstream.com/lithium-ion-charge-voltage.htm

Grx In figure 6 on this page if you look closely you will see that the discharge depth does not wear out, case 1: 75-65% uses 10% and only provides 90,000 units of power and case 2: 75-25% uses 50% and gives 150,000 power units showing that 75-25% is better than 75-65%, in the old comments Reza says just that. These are other sources that show that discharging the battery to 0% is good https://ui.adsabs.harvard.edu/abs/2002JPS...111..130C/abstract https://accubattery.zendesk.com/hc/en-us/articles/360016286793-Re-Modeling-of-Lithium-Ion-Battery-Degradation-for-Cell-Life-Assessment https://www.google.com/search?q=cycle%20life%20testing%20and%20modeling%20of%20graphitescience%20direct&tbm=isch&hl=pt-BR&tbs=rimg:CdBUKNSIrHK4YYsBXih3_11bRsgIMCgIIABAAOgQIABAA&client=ms-android-samsung-gj-rev1&prmd=niv&sa=X&ved=0CBIQuIIBahcKEwiw2MC-nZf3AhUAAAAAHQAAAAAQBQ&biw=412&bih=806#imgrc=4_37iTEG2y_zXM

I found that the best percentage for mobile and laptop is 0-50%. I've been doing this for over a year on my cell phone and the battery is at 95% health, and my cell phone is almost 4 years old.

Does this information give anyone else anxiety. I just bought an ebike that has a huge battery that I would like to preserve (It costs over $1000 dollars to replace). I like to go on long rides (big depth of discharge), But that is of course not good for the battery. I also like the increase of power when it is at a high charge however that is also not good for the battery. Both of these things are bad for the battery and shorten the amount of cycles it can endure. So the question of "how high should I charge it, and how low should it go" arises. From my research there is no good answer to this question as there are always trade offs.

Adrian, Table 3 and Figure 6 allow you to make a rough calculation and I would say that cycling between 75-45% (approx. ~10% degradation per annum) is better than storing your battery at 100% (~20% degradation per annum). At room temperature (20C) you should expect 80-85% capacity after one year stored at 100% (Table 3). Meanwhile, cycling between 75-45%, let's say you would utilise four cycles per day (30% x 4 = 120% total battery capacity), five days per week, 48 weeks per year. This works out to 960 cycles which would leave you with ~96% capacity remaining (Figure 6). Furthermore, assuming you store the laptop overnight at ~40%, it will lose an additional ~5% capacity (Table 3).

Most chargers for mobile phones, laptops, tablets and digital cameras charge Li-ion to 4.20V/cell. This allows maximum capacity, because the consumer wants nothing less than optimal runtime. Industry, on the other hand, is more concerned about longevity and may choose lower voltage thresholds. Satellites and electric vehicles are such examples.

I can find a lot of information sure. But I can't find anything for BMS amp for each battery. Do you batterys use a BMS?

Increasing the cycle depth also raises the internal resistance of the Li-ion cell. Figure 7 illustrates a sharp rise at a cycle depth of 61 percent measured with the DC resistance method(See also BU-802a: How does Rising Internal Resistance affect Performance?) The resistance increase is permanent.

Yes it does help, however the most important part of stabilization is first balancing the flycam initially. That would mean placing all items that will be used on the day of shooting (ie, Monitor, Battery, Camera, Lens, Wires, additional mounts, etc) for proper accuracy in the balancing process. It will take some time to correctly balance, but once you have the corret balance of the stabilizer, the arm and vest will be extremely helpful in the final stabilization.

As battery care-giver, you have choices in how to prolong battery life. Each battery system has unique needs in terms of charging speed, depth of discharge, loading and exposure to adverse temperature. Check what causes capacity loss, how does rising internal resistance affect performance, what does elevated self-discharge do and how low can a battery be discharged? You may also be interested in the fundamentals of battery testing.

Comments from the previous website are not compatible with our new commenting system but we have preserved them so our users can still reference and make use the information in them.

In reference to the "long life mode" above (stop charging at 80% while on AC power): some software solutions introduce a "sailing mode" that stops charging at 80%, then lets the battery discharge a bit to say 60%, then resume charging back to 80% and so on. This is supposedly to prevent frequent micro-level discharging - charging - discharging - charging etc. between say 79.9% and 80%. This is surely happening with devices that have a power circuit where - even when on AC - the device runs on battery power (cannot draw power from the charger directly to operate - the battery is always in the middle) such as modern MacBooks. So my question is: is this "sailing mode" beneficial to the battery? Or is the frequent micro-charging around 80% not an issue for "battery-in-the-middle" devices? Thanks, Peter

Lithium-ion battery cycle life

Every 0.10V drop below 4.20V/cell doubles the cycle but holds less capacity. Raising the voltage above 4.20V/cell would shorten the life. The readings reflect regular Li-ion charging to 4.20V/cell.

Alex, Accubattery analyzed figure 6 and found that 75-65% wears 17.5% in 1000 cycles, 75-45% 8.8% and 75-25% 6.5% so that means the depth of discharge does not wear , it's ok to use up to 0%. link:https://accubattery.zendesk.com/hc/en-us/articles/360016286793-Re-Modeling-of-Lithium-Ion-Battery-Degradation-for-Cell-Life-Assessment

Only a full cycle provides the specified energy of a battery. With a modern Energy Cell, this is about 250Wh/kg, but the cycle life will be compromised. All being linear, the life-prolonging mid-range of 85-25 percent reduces the energy to 60 percent and this equates to moderating the specific energy density from 250Wh/kg to 150Wh/kg. Mobile phones are consumer goods that utilize the full energy of a battery. Industrial devices, such as the EV, typically limit the charge to 85% and discharge to 25%, or 60 percent energy usability, to prolong battery life(See Why Mobile Phone Batteries do not last as long as an EV Battery)

Environmental conditions, not cycling alone, govern the longevity of lithium-ion batteries. The worst situation is keeping a fully charged battery at elevated temperatures. Battery packs do not die suddenly, but the runtime gradually shortens as the capacity fades.

You will definitely be pleased with this vest for the price. Now I�m trying to figure out a way to mount the camera to it and use it with a handheld grip. Any suggestions?

The Vest will fit to the sizes as follows :Minimum Chest Size : 38 inchesMinimum Waist Size : 28 inchesMaximum Chest Size : 52 inchesMaximum Waist Size : 60 inches

I have a new cordless lithium battery operated vacuum cleaner at my winter residence. Should I leave it plugged in or not for the 6 months I am away? Thank you.

"On the negative side, a lower peak charge voltage reduces the capacity the battery stores. As a simple guideline, every 70mV reduction in charge voltage lowers the overall capacity by 10 percent. Applying the peak charge voltage on a subsequent charge will restore the full capacity." So this means that I can charge my battery on 3.92v to improve it's life but if I want the full capacity of my battery at any given moment I can go back and charge with a 4.2v charger? Thanks

is the 75%-25% cycle number indicative of full cycles? or just 50% use cycles? as if the latter it can't be compared to 100-25% as that is a 75% use cycle.

Besides selecting the best-suited voltage thresholds for a given application, a regular Li-ion should not remain at the high-voltage ceiling of 4.20V/cell for an extended time. The Li-ion charger turns off the charge current and the battery voltage reverts to a more natural level. This is like relaxing the muscles after a strenuous exercise(See BU-409: Charging Lithium-ion)

Guideline: Every 70mV drop in charge voltage lowers the usable capacity by about 10%.Note: Partial charging negates the benefit of Li-ion in terms of high specific energy.

Alexandre Ramos I looked at the source you quoted. According to the information I read under Modeling of Lithium-Ion Battery Degradation, there is nothing there to support that discharging a lithium battery down to 0% has benefit. In fact, if you look at the information the conclusion you would draw is that discharging the battery down that low would have a negative effect on the life of the battery. The figures clearly indicate that a battery charged to 75% then discharged to 45% has less capacity degradation over time than a battery charged to 75% and discharged to 25%. Why would you think discharging it all the way down to 0% would be a good idea?? For a device that is not constantly needed because a lot of the time it is in standby and the user is worried more about longevity than use 75% to 25% seems the best equation to use. But it certainly isn't the Best Use for everyone because you end up getting less work out of the battery. Charging to higher amounts than 75% isn't necessarily a terrible idea if the device is going to be used immediately in such a way that the voltage wouldn't stay there long enough to do damage (leaving it charged). For instance, I might charge up my drill to 90% because I'm getting ready to heavily use it. It would be at 90% for so little time it wouldn't make a huge difference, outside the fact that it might allow me to stop using it at 25% instead of a lower percentage. Please point me to any sources which indicate it's a good idea to completely discharge a lithium battery. The only battery chemistry I have ever heard of that this was a good idea for was NICAD. And that was a periodic complete drain, not habitual.

The Flycam Comfort Arm & Vest is not compatible with the DJI RSC2. However, you can mount this on the Flycam, Galaxy Arm & Vest GLXY-AV with the help of Flycam Gimbal Adapter FLCM-GA.

Image

I am trying to understand this report to clarify. I have a 60V 12AH lithium battery Should l charge it to full charge all the time.

01.TRANSFORMS YOUR SINGLE-HANDED STABILIZER The Flycam Comfort Arm & Vest converts a handheld stabilizer into a full body-worn system that eliminates the stress and captures fluid on-screen camera shots with unsurpassed comfort.The spring arm and vest connects to each other assisting the stabilizer and greatly improving the overall functionality and reducing operator fatigue.It lets you execute more natural-looking manual camera pan movements.Gives you Wide Vertical range of motion, including “Low Mode”.

In terms of longevity, the optimal charge voltage is 3.92V/cell. Battery experts believe that this threshold eliminates all voltage-related stresses; going lower may not gain further benefits but induce other symptoms(See BU-808b: What causes Li-ion to die?) Table 4 summarizes the capacity as a function of charge levels. (All values are estimated; Energy Cells with higher voltage thresholds may deviate.)

Can someone please confirm for me I have a 52 V E bike battery lithium ion 19.2 AH, Correct me if I’m wrong I think this is telling me to only charge it to 75-80% full and then run it down to about 25% of discharge for maximum battery life is this correct? and I should always let the battery cool off in my home before I plug it into charge correct?

Figure 8 extrapolates the data from Figure 6 to expand the predicted cycle life of Li-ion by using an extrapolation program that assumes linear decay of battery capacity with progressive cycling. If this were true, then a Li-ion battery cycled within 75%–25% SoC (blue) would fade to 74% capacity after 14,000 cycles. If this battery were charged to 85% with same depth-of-discharge (green), the capacity would drop to 64% at 14,000 cycles, and with a 100% charge with same DoD (black), the capacity would drop to 48%. For unknown reasons, real-life expectancy tends to be lower than in simulated modeling(See BU-208: Cycling Performance)

All prices on the website are VAT inclusive. B2B customers (except Belgium) can visit at https://business.proaim.be/ to get VAT Free pricing.

The main shaft (spool adapter) has the diameter of 18.5mm which can easily adapt the stabilizers with the handle's inner diameter of 19mm. We provide a bush to add onto it to make it 21.5mm so that it can adapt to the handle's diameter of 22mm.

Correct me if I am wrong, The closer you keep the battery to 50% charge the better. Also the lower the temperature the better (but not below freezing ofc).

Although a battery should deliver 100 percent capacity during the first year of service, it is common to see lower than specified capacities, and shelf life may contribute to this loss. In addition, manufacturers tend to overrate their batteries, knowing that very few users will do spot-checks and complain if low. Not having to match single cells in mobile phones and tablets, as is required in multi-cell packs, opens the floodgates for a much broader performance acceptance. Cells with lower capacities may slip through cracks without the consumer knowing.

At first glance, the 75-65 cycle seems to be the best for the battery, but you need to normalize it for work done: a 50% depth of discharge cycle does 5 times more work, 1000 cycles of 10% is 100 full cycles. This is labeled as work done in the table below. SoD / EoD: start and end of discharge. DoD: depth of discharge, SoD - EoD. Cap % at 4k: capacity lost at 4000 DST cycles. Work done: 4000 * DoD / 100%. Cap loss per 1k work done: capacity loss per 1000 full cycles. 1000 cycles is about the full life time of a phone, about 3 years of 1 full charge a day. SoD EoD DoD Cap loss Work done Cap % at 4k Cap loss per 1k work 100 25 75 81.5 18.5 3000 6.2 100 40 60 83.5 16.5 2400 6.9 85 25 60 85 15 2400 6.3 100 50 50 85.5 14.5 2000 7.3 75 25 50 87 13 2000 6.5 75 45 30 89.5 10.5 1200 8.8 75 65 10 93 7 400 17.5 As you can see, in this model, the loss is with the 100-25 cycle, or alternatively, the 75-25 cycle. It is unfortunate this information is so hidden in this paper. Also, note that this test was done with a 3.3V nominal voltage cell, which is not a standard Li-ion cell, that chemistry is 3.7/3.8V, so findings do not always transfer.

We provide 1 year warranty from the date of purchase. Items which are covered by the warranty period will be replaced at no cost to the customer. Replacement parts of the product will be provided at nominal cost (covering the cost price of the replacement parts only) to the customers after the Warranty Period has expired.

* Discrepancies exist between Table 2 and Figure 6 on cycle count. No clear explanations are available other than assuming differences in battery quality and test methods. Variances between low-cost consumer and durable industrial grades may also play a role. Capacity retention will decline more rapidly at elevated temperatures than at 20ºC.

I have a laptop with Lion battery, I like to work with it while charging and I discovered that charging it through its usb-c port is very slow. My question is; may I charge it lets say for periods of 8hours while I work?(including that room temperature is relatively low and the battery level does not reach 100% nor 0%) should I let it discharge sometime?

For safety reasons, many lithium-ions cannot exceed 4.20V/cell. (Some NMC are the exception.) While a higher voltage boosts capacity, exceeding the voltage shortens service life and compromises safety. Figure 5 demonstrates cycle count as a function of charge voltage. At 4.35V, the cycle count of a regular Li-ion is cut in half.

Most Li-ions charge to 4.20V/cell, and every reduction in peak charge voltage of 0.10V/cell is said to double the cycle life. For example, a lithium-ion cell charged to 4.20V/cell typically delivers 300–500 cycles. If charged to only 4.10V/cell, the life can be prolonged to 600–1,000 cycles; 4.0V/cell should deliver 1,200–2,000 and 3.90V/cell should provide 2,400–4,000 cycles.

Table 2 estimates the number of discharge/charge cycles Li-ion can deliver at various DoD levels before the battery capacity drops to 70 percent. DoD constitutes a full charge followed by a discharge to the indicated state-of-charge (SoC) level in the table.

Hello, first thabks a lot for the very valable information you gather here and make very easy to understand. However, I m building a battery pack for ebike and wondering if it makes sense having a standard BMS that will balance at full charge 4,2V probably and a charger set to 90% so 4,0V ? So I wont have a balanced pack over the time... My main concern is to have a long life cycle battery. I ll use Sanyo NCR18650GA fin a 10.5ah 36V pack. I know of Smart BMS that can set balancing voltage, but they are expensive and I heard their bluetooth consume extra battery. Thanks ahead for your help

Comments are intended for "commenting," an open discussion amongst site visitors. Battery University monitors the comments and understands the importance of expressing perspectives and opinions in a shared forum. However, all communication must be done with the use of appropriate language and the avoidance of spam and discrimination.

Figure 6 is informative, but there is not enough information (at least on this page) to conclude how exactly low voltage affects battery cycles as opposed to high voltage. Does charging from 0-75% have the same effect as 25%-100%? What about 0-85% compared to 15-100%? It is stated in several places that fully discharging is bad for a battery, but is it really? Or is it a myth, given how damaging charging to 100% SoC is?

This sentence from "What can the user do" seems incongruous The question is asked, “Should I disconnect my laptop from the power grid when not in use?” Under normal circumstances this should not be necessary because charging stops when the Li-ion battery is full. A topping charge is only applied when the battery voltage drops to a certain level. Most users do not remove the AC power, and this practice is safe". Perhaps its presumed that all previous advice has been digested and the sentence is only about safety. My reading thus far indicates that the ideal likely for battery life is to not charge it beyond 50% and re-charge it at around 25%.

The thing is, the smaller the SoC, the high the cycles. I have an always on tablet. I did some testing and my results conclude the SoC has very little effect on capacity retention given this relationship: SOC 25-85 25-75 45-75 65-75 Hours for SoC Cycle (including charging) 24 20 8 4 Cycles (1Y) 365 438 1095 2190 Cycles (5Y) 1825 2190 5475 10950 Cycles (10Y) 3650 4380 10950 21900 % Retention 5 Years ~91 ~91 ~89 ~87 % Retention 10 Years ~87 ~88 ~86 ~84

[1] Courtesy of Cadex[2] Source: Choi et al. (2002)[3] B. Xu, A. Oudalov, A. Ulbig, G. Andersson and D. Kirschen, "Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment," June 2016. [Online]. Available: https://www.researchgate.net/publication/303890624_Modeling_of_Lithium-Ion_Battery_Degradation_for_Cell_Life_Assessment.[4] Source: Technische Universität München (TUM)[5] With permission to use. Interpolation/extrapolation by OriginLab.

Lithium-ion has not yet fully matured and is still improving. Notable advancements have been made in longevity and safety while the capacity is increasing incrementally. Today, Li-ion meets the expectations of most consumer devices but applications for the EV need further development before this power source will become the accepted norm. BU-104c: The Octagon Battery – What makes a Battery a Battery, describes the stringent requirements a battery must meet.

The question is asked, “Should I disconnect my laptop from the power grid when not in use?” Under normal circumstances this should not be necessary because charging stops when the Li-ion battery is full. A topping charge is only applied when the battery voltage drops to a certain level. Most users do not remove the AC power, and this practice is safe.

Note: DC method delivers different internal resistance readings than with the AC method (green frame). For best results, use the DC method to calculate loading.

Yes, you can put a DSLR on it, you can put a variety of cameras as this arm and vest will perfectly work for total weight up to 8kg(17lbs).

Green Hills, Hoge Wei 16,1930 Zaventem, Belgium, Europe Tel : +3228877411(9AM-5PM CEST)Whats app : +32477843327 (9AM-5PM CEST)E-mail : sales@proaim.beSkype : movofilms

Figure 1 illustrates the capacity drop of 11 Li-polymer batteries that have been cycled at a Cadex laboratory. The 1,500mAh pouch cells for mobile phones were first charged at a current of 1,500mA (1C) to 4.20V/cell and then allowed to saturate to 0.05C (75mA) as part of the full charge saturation. The batteries were then discharged at 1,500mA to 3.0V/cell, and the cycle was repeated. The expected capacity loss of Li-ion batteries was uniform over the delivered 250 cycles and the batteries performed as expected.

Lithium-ion battery

Li-ion batteries are charged to three different SoC levels and the cycle life modelled. Limiting the charge range prolongs battery life but decreases energy delivered. This reflects in increased weight and higher initial cost.

A topping charge is only applied when the battery voltage drops to a certain level. !! what is certain level ? can i change it ?

According to SOK battery tech support, this information does not apply to their LiFePo4 batteries or that chemistry in general. Biggest issue would be lack of top balancing unless you have external balancer. I'll still check around to see what can make these last longer. Their recommendation was to lower the usable capacity on the bottom end to extend lifetime (increased charge cycles but lower usable capacity).

Evaluating battery life on counting cycles is not conclusive because a discharge may vary in depth and there are no clearly defined standards of what constitutes a cycle(See BU-501: Basics About Discharging). In lieu of cycle count, some device manufacturers suggest battery replacement on a date stamp, but this method does not take usage into account. A battery may fail within the allotted time due to heavy use or unfavorable temperature conditions; however, most packs last considerably longer than what the stamp indicates.

I have two queries: 1.) In Table 2, where you have shown Discharge cycles against a DoD. Does this 'discharge cycle' in each row denote the same complete 1 Cycle(100% amount discharged and charged, not necessarily in one go) as we understand in battery terminology. Does this one 'discharge cycle' imply the same amount for all the rows in the table. Or does it derive its meaning from the respective DoD. For e.g. does each discharge cycle at 80% DoD mean the same '100% Discharge/Charge Cycle' as what is there for 60% DoD? If not, then one discharge cycle at 80% DoD would quantify for 80 units of charging/discharging and one discharge cycle at 60% DoD would mean 60 units. This would mean that 400 Discharge Cycles at 80% DoD, would have delivered 400*80 = 32000 Units. 600 Discharge cycles at 60% DoD would deliver 600*60 = 36000 Units. And both, as the table suggested, would be left with 70% Capacity.Still pretty good, even if discharge cycle mean different amount of cycle for two different DoD %. But if 'discharge cycle' mean the same amount, then it would be even more compelling. 400*100 = 40000 units vs 600*100= 60000 units delivered with 70% Capacity remaining. 2.) Similarly,Figure 6 should be interpreted wrt context. Consider two extremes cycles: 75–65% - Black Line 100–25% - Orange Line After, 400 DST cycles of 100-25% cycle it would have delivered 30000 Units(75*400) and would be left with ~92%(from the figure) capacity. For 75–65% cycle, it would have to complete 3000 DST cycles to deliver same amount of units (10*3000) and it would be left with ~95% capacity. So, 75-65% is actually 3% better than 100-25% when both have gone through same amount of discharging/charging units. No two cycles should be compared for retention capacity on the same vertical line of DST cycles since by that time they have gone through amounts of charge/discharge units. Still, I think as mentioned in my previous point, even for the same amount of units delivered, narrow charge-discharge bandwidth would leave you with more capacity.

All prices on the website are VAT inclusive. B2B customers (except Belgium) can visit at https://business.proaim.be/ to get VAT Free pricing.

02.EXPERIENCE RELIEF WITH THE COMFORT VEST Foam Padded Vest with extremely breathable material provides great comfort, perfect fit and unrestricted movements.Easy height adjustment & Velcro straps enable a comfortable fit for all body types.A unique and proprietary Arm-to-Vest Connector allows the Support Arm’s angle to be adjusted relative to the Support Vest.Push-fit buckles allow you to remove the vest quickly during short breaks.

Like many people I normally use a laptop in places with a power outlet. To keep to a 75% to 45% use cycle as recommended, I can run a battery monitor that tells me when to disconnect and reconnect the charger. Is there, in existence or technically possible, a way to set the laptop to stop charging the battery at a lower voltage, so that I can leave the charger connected? Also, if the charger effectively disconnects the battery at 100% and the laptop runs direct from the charger, surely when leaving the charger connected all the time will not affect the battery, which will stay cool, though at 100%. NO discharge cycles, but maintained at 100%. Is this worse than cycling between 75% and 45%?

If you have a suggestion or would like to report an error, please use the "contact us" form or email us at: BatteryU@cadex.com. We like to hear from you but we cannot answer all inquiries. We recommend posting your question in the comment sections for the Battery University Group (BUG) to share.

Experiment: Chalmers University of Technology, Sweden, reports that using a reduced charge level of 50% SOC increases the lifetime expectancy of the vehicle Li-ion battery by 44–130%.

Lower charge voltages prolong battery life and electric vehicles and satellites take advantage of this. Similar provisions could also be made for consumer devices, but these are seldom offered; planned obsolescence takes care of this.

Can anyone tell me if the information contained on this page applies to LiFePO4 batteries? I heard they were a little different than older LI ion batteries and also contained battery management systems (BMS)

Battery manufacturers often specify the cycle life of a battery with an 80 DoD. This is practical because batteries should retain some reserve before charge under normal use(See BU-501: Basics about Discharging, “What Constitutes a Discharge Cycle”) The cycle count on DST (dynamic stress test) differs with battery type, charge time, loading protocol and operating temperature. Lab tests often get numbers that are not attainable in the field.

The material on Battery University is based on the indispensable new 4th edition of "Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers" which is available for order through Amazon.com.