This page titled 2.6: Diffraction Gratings is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by David J. Raymond (The New Mexico Tech Press) via source content that was edited to the style and standards of the LibreTexts platform.

Diffraction grating formulaDerivation

Substituting in the above expressions for \(\Delta \theta \text { and } \alpha_{\max }\) and solving for \(\Delta \lambda, \text { we get } \Delta \lambda>\lambda /(2 m n)\), where \(\lambda\) is the average of the two wavelengths and \(n = w ∕ d\) is the number of slits in the diffraction grating. Thus, the fractional difference between wavelengths which can be distinguished by a diffraction grating depends solely on the interference order m and the number of slits n in the grating:

Diffraction gratingexperiment

The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Legal. Accessibility Statement For more information contact us at info@libretexts.org.

Whereas the angular width of the interference peaks is governed by the single slit equation, their angular positions are governed by the two slit equation. Let us assume for simplicity that \(|\theta|<1\) so that we can make the small angle approximation to the two slit equation, \(\mathrm{m} \lambda=\mathrm{d} \sin \theta \approx \mathrm{d} \theta\), and ask the following question: How different do two wavelengths differing by \(\Delta \lambda\) have to be in order that the interference peaks from the two waves not overlap? In order for the peaks to be distinguishable, they should be separated in \(\theta\) by an angle \(\Delta \theta=m \Delta \lambda / d\), which is greater than the angular width of each peak, αmax:

Figures 2.17-2.19 show the intensity of the diffraction pattern as a function of position x on the display screen (see Figure \(\PageIndex{16}\):) for gratings with 2, 4, and 16 slits respectively, with the same slit spacing. Notice how the interference peaks remain in the same place but increase in sharpness as the number of slits increases.

Diffraction grating formulawavelength

Image

The width of the peaks is actually related to the overall width of the grating, \(w = nd\), where n is the number of slits. Thinking of this width as the dimension of a large single slit, the single slit equation, \(\mathrm{a}_{\max }=\lambda /(2 \mathrm{w})\), tells us the angular width of the peaks.

Since the angular spacing \(\Delta \theta\) of interference peaks in the two slit case depends on the wavelength of the incident wave, the two slit system can be used as a crude device to distinguish between the wavelengths of different components of a non-sinusoidal wave impingent on the slits. However, if more slits are added, maintaining a uniform spacing d between slits, we obtain a more sophisticated device for distinguishing beam components. This is called a diffraction grating.