USAF Lens Testing - usaf resolution chart
A zoom lens allows photographers to vary its effective focal length through a specified range, which alters the angle of view and magnification of the image. Zoom lenses are described by stating their focal length range from the shortest to longest, such as 24–70 mm and 70–200 mm. The focal length range of a zoom lens directly correlates to its zoom ratio, which is derived by dividing the longest focal length by the shortest. Both of the lenses above have a zoom ratio of approximately 2.9x, or 2.9:1. The zoom ratio also describes the amount of subject magnification a single lens can achieve across its available focal length range.
The constant angle of view of a prime lens forces this type of experimentation—“zooming with your feet”—because the other options are either bad pictures or no pictures. Furthermore, restricting yourself to a single focal length for an extended period of time acquaints you to its angle of view and allows you to visualize a composition before raising the camera to your face.
Read here how the PHERAstar® FSX microplate reader identified small molecule inhibitors of the YEATS domain out of thousands of compounds using an AlphaScreen-based assay.
All our chicken coops come with polycarbonate windows. Our Carolina Coop and custom chicken coops have polycarbonate window inserts that can be easily ...
Beyond portraiture, long-focus lenses are useful for isolating subjects in busy and crowded environments. Photojournalists, wedding, and sports photographers exploit this ability regularly. Due to their magnifying power, super telephoto lenses are a mainstay for wildlife and nature photographers. Lastly, long-focus lenses are frequently used by landscape photographers to capture distant vistas or to isolate a feature from its surroundings.
The angle of view describes the breadth, or how much, of a scene is captured by the lens and projected onto your camera’s image sensor. It’s expressed in degrees of arc and measured diagonally along the image sensor. Thus, the angle of view of any lens of a given focal length will change depending on the size of the camera’s image sensor. For example, a 50 mm lens has a wide angle of view on a medium format camera, a normal angle of view on a full-frame camera, a narrower angle of view on an APS‑C camera, and a narrow angle of view on a Micro Four-Thirds camera.
There are two types of wide-angle lenses, rectilinear and fisheye (sometimes termed curvilinear). The vast majority of wide-angle lens—and other focal lengths, too—are rectilinear. These types of lenses are designed to render the straight elements found in a scene as straight lines on the projected image. Despite this, wide-angle rectilinear lenses cause rendered objects to progressively stretch and enlarge as they approach the edges of the frame. In photography, all fisheye lenses are ultra wide-angle lenses that produce images featuring strong convex curvature. Fisheye lenses render the straight elements of a scene with a strong curvature about the centre of the frame (the lens axis). The effect is similar to looking through a door’s peephole, or the convex safety mirrors commonly placed at the blind corners of indoor parking lots and hospital corridors. Only straight lines that intersect with the lens axis will be rendered as straight in images captured by fisheye lenses.
A true zoom lens, known as a parfocal lens, maintains a set focus distance across its entire focal length range. In the days before digital photography—before electronic autofocus, even—it was common practice to focus a zoom lens at its longest focal length before taking the picture at the desired (if different) focal length. This technique is no longer possible because contemporary variable focal length lenses designed for photography are almost exclusively varifocal lenses, which do not maintain set focus across their zoom range. In practice, most photographers do not know the difference because the autofocus algorithms in their cameras compensate for the slight variations.
Have you heard of dTAG degraders yet? Check out this novel approach in targeted protein degradation and learn how it can be used to identify disease-relevant proteins.
GFPexcitation emission
Lenses with an angle of view of 35° or narrower are considered long-focus lenses. This translates to a focal length of about 70 mm and greater on full-frame cameras, and about 45 mm and longer on APS‑C cameras. It’s common for photographers to (incorrectly) refer to long-focus lenses as “telephoto” lenses. A true telephoto lens is one whose indicated focal length is longer than the physical length of its body. Due to this ubiquitous misuse of the word, there exists a further classification of long-focus lenses whose angle of view is 10° or narrower called “super telephoto” lenses (equal to or greater than 250 mm on full-frame cameras and 165 mm on APS‑C cameras). Fortunately, super telephoto lenses are more often than not actual telephoto designs. A great example is the Canon EF 800 mm f/5.6L IS USM Lens, which is only 461 mm long.
We compared DNA quantification methods: A260, fluorescent high sensitivity and broad range kits. Find out which method fits best to your dsDNA samples!
16 votes, 14 comments. I know beer goggles are a thing, but anyone else get weed goggles? To me, people are so much better looking when I'm ...
Edmunds is a technology company that offers an online platform for automotive inventory and information, including expert car reviews.
Magnifier Magnifying Glass Brass & Honey Finished Handle. This nautical solid brass Magnifier Magnifying Glass measures length 9.75" x width 4" x height 1".
For any given camera system, normal lenses are generally the “fastest” available. Adjectives such as “fast” and “slow” always describe lens speed, which refers to a lens’ maximum aperture opening. For instance, a lens with a ƒ/2 or larger aperture is generally considered fast; a lens with a ƒ/5.6 or smaller aperture is deemed to be slow. How is speed relevant to aperture? Recall the reciprocity law: larger apertures permit more light into the camera, thereby allowing you to use faster shutter speeds, and vice versa.
Goal SIP calculator helps you determine the monthly SIP amount you need to invest to reach a particular financial goal. Click here to learn more.
mCherryspectrum
The focal length of a lens determines its magnifying power, which is the apparent size of your subject as projected onto the focal plane where your image sensor resides. A longer focal length corresponds to greater magnifying power and a larger rendition of your subject, and vice versa.
Buildings, do not use plastic windows as defined in this guide specification. Adhere to UFC 1-300-02 Unified Facilities Guide. Specifications (UFGS) Format ...
Meiji EM-30 Dual Magnification Stereo Microscope Series.
If you’re into math—and who isn’t?—the general formula for calculating the angle of view when you know the focal length and the sensor size is:
Experimental ProcedureCell culture:GFP+/mcherry+- and WT-HeLa cells were precultured separately in tissue culture flasks in DMEM with 10% FBS, 2 mM glutamine and 1% pen/strep. On the day before the measurement, cells were detached and seeded with 20,000 cells/well on a 96-well plate with µclear bottom in 200 µL medium. GFP+/mcherry+-HeLas were seeded in ratios from 0%-100% by mixing them with WT-HeLa cells to simulate transfection efficiency to different extents. Cells were allowed to attach to the cell culture surface overnight.
The novel fluorescent biosensor SSB quantifies RNA and assists in studying transcription. Read how the CLARIOstar microplate reader assisted in assay development.
A “normal” lens is defined as one whose focal length is equal to the approximate diagonal length of a camera’s image sensor. In practice, such lenses tend to fall into a range of slightly longer focal lengths that are claimed to possess an angle of view comparable to that of the human eye’s cone of visual attention, which is about 55°.
In photography, the term macro refers to extreme close-ups. Macro lenses are normal to long-focus lenses capable of focusing on extremely close subjects, thereby rendering large reproductions. The magnification ratio or magnification factor is the size of the subject projected onto the image sensor in comparison to its actual size. A macro lens’ magnification ratio is calculated at its closest focusing distance. A true macro lens is capable of achieving a magnification ratio of 1:1 or higher. Lenses with magnification ratios from 2:1 to 10:1 are called super macro. Ratios over 10:1 cross over into the field of microscopy. When shopping for a macro lens, keep in mind that in the context of kit lenses and point-and-shoot cameras, some manufacturers use the macro moniker as marketing shorthand for “close-up photography.” These products do not achieve 1:1 magnification ratios. When in doubt, check the technical specifications.
mCherryflow cytometry channel
Matrix scans provide a local resolution of the signal throughout the well and thereby provide the opportunity to monitor seeding homogeneity and local variations of the transfection efficiency. In this measurement, 225 single measurement points were available, providing an image-like insight into the well and the level of transfection efficiency. Furthermore, this scan option allows exclusion of single measurement points as outliers. The spiral averaging measurement setting does not provide this resolution. However, it requires a fraction of the time (4 min spiral averaging vs. 34 min matrix scan per full 96-well plate) and provides data of comparable quality.
For instance, on full-frame cameras, whose image sensors measure 36×24 mm, the diagonal length is approximately 43 mm, and yet, the 50 mm lens is conventionally considered normal. On APS‑C cameras (24 × 16 mm), whose diagonal spans about 28 mm, a 35 mm focal length is regarded as normal primarily because its angle of view is similar to the 50 mm lens on the full-frame format. Therefore, normal focal lengths will differ as a function of the camera’s image sensor size. In fact, as you continue reading, keep in mind that descriptive terms such as “ultra-wide,” “short,” “long,” et cetera, implicitly refer to the angle of view of a lens.
In general, a short focal length—or short focus, or “wide-angle”—lens is one whose angle of view is 65° or greater. Recall from above that angle of view is determined by both focal length and image sensor size, which means that what qualifies as “short” is predicated upon a camera’s image sensor format. Therefore, on full-frame cameras, the threshold for wide-angle lenses is 35 mm or less, and on APS‑C cameras, it’s 23 mm or less. Lenses with an angle of view of 85° or greater are called “ultra wide-angle,” which is about 24 mm or less on full-frame and 16mm or less on APS‑C cameras.
Cells are transfected with exogenous DNA to study the regulation of gene and protein expression. To monitor transfection efficiency, a reporter gene is often attached to the gene of interest to monitor its insertion into the cell’s genome. Fluorescent proteins like Green Fluorescent Protein (GFP) are often used as such reporters during transfection efficiency experiments. The reporter gene can either be present on the same vector as the gene of interest or can alternatively be located on a separate plasmid. The success of a transfection experiment is defined by the ratio of cells expressing the used reporter which “reports” on the insertion of the gene of interest. This ratio is also known as transfection efficiency.
RFPexcitation emission
Due to their ability to magnify distance objects, long-focus lenses present photographers with many uses. They are almost universally lauded for portraiture because their narrow angle of view allows for a higher magnification of the subject from conventionally more pleasing perspectives. As a rule of thumb, a desirable focal length for a portrait lens starts at twice the normal focal length for the camera system (about 85 mm for full-frame and 56 mm for APS‑C).
It’s important to recognize that the convenience and flexibility of zoom lenses can inspire lazy photography. The ease of changing the angle of view encourages photographers to settle on compositions that are good-enough, instead of seeking out better perspectives and gaining a deeper understanding of their subjects. Whatever lens you have, be it zoom or prime, it’s vital for the development of good photography to consider your subject from several perspectives by walking towards, stepping away, and circling around them.
BMG LABTECH plate readers reliably detect cells expressing a fluorescent marker down to ~600 cells/well in a 96-well plate and thereby represent a valuable alternative to microscopes to monitor transfection efficiency. Both matrix scan and spiral averaging deliver accurate results, allowing the user to choose between speed and image-like resolution. The readers also reliably detect transfection efficiency experiments based on red-shifted dyes. These come with the advantage of avoiding most of the autofluorescence derived primarily from media and cell-derived components.
mCherryvs GFP
In photography, the most essential characteristic of a lens is its focal length, which is a measurement that describes how much of the scene in front of you can be captured by the camera. Technically, the focal length is the distance between the secondary principal point (commonly and incorrectly called the optical centre) and the rear focal point, where subjects at infinity come into focus. The focal length of a lens determines two interrelated characteristics: magnification and angle of view.
The lower limit of detection for the simulated transfection efficiency in 20,000 cells per well was calculated based on the SD of the blank (= 100% WT HeLa w/o GFP+/mcherry+-HeLas) and the slope of the respective standard curve. The VANTAstar is able to reliably detect a transfection efficiency down to 5.3% measuring GFP fluorescence (fig. 4). The detectable transfection efficiency could be improved even further down to 3.1% by measuring mcherry fluorescence. This benefit can be mainly attributed to the reduced presence of cellular autofluorescence as well as of autofluorescing cell culture medium components in the red wavelength range.
The relationship between the angle of view and a lens’s focal length is roughly inversely proportional from 50mm and up on a full-frame camera. However, as the focal length grows increasingly shorter than 50mm, that rough proportionality breaks down, and the rate of change in the angle of view slows. For example, the change in angle of view from 100mm to 50mm is more pronounced than the change from 28mm to 14mm.
EGFPexcitation emission
Wide-angle lenses represent the only practical method of capturing a scene whose essential elements would otherwise fall outside the angle of view of a normal lens. Conventional subjects of ultra wide-angle lenses include architecture (especially interiors), landscapes, seascapes, cityscapes, astrophotography, and the entire domain of underwater photography. Wide-angle lenses are often used for photojournalism, street photography, automotive, some sports, and niche portraiture.
Measurement:On the day of measurement, the cell supernatant was discarded, and the cells were washed 2 x for 5 min in 200 µL FluroBrite medium with 5% FBS, 2 mM glutamine and 1% pen/strep. Plates including 200 µL medium/well were transferred to the VANTAstar plate reader and GFP and mcherry fluorescence was determined either with matrix scan or spiral averaging using the bottom optic setting to evaluate the simulated transfection efficiency. Afterwards cells were fixated in 4% PFA and stained with Hoechst 33342 for 15 min, washed 3 times in PBS, and read again with the VANTAstar using matrix scan or spiral averaging. With the measurement of the Hoechst signal, total cell counts were determined as internal standard for the evaluation of the transfection efficiency.
As you have learned in the section on apertures and f‑numbers, “an increase in focal length decreases the intensity of light reaching the image sensor.” This relationship is most obvious in zoom lenses. A “variable” aperture zoom lens is a lens whose maximum aperture becomes smaller with increased focal length. These types of zoom lenses are simple to spot because they list a maximum aperture range instead of a single number. The range specifies the maximum aperture for the shortest and longest focal lengths of the zoom range. Variable aperture lenses are the most common type of zoom lens. A constant aperture or “fixed” aperture zoom lens is one whose maximum aperture remains constant across the entire zoom range. Fixed aperture lenses are typically more massive and more expensive than their variable aperture counterparts. They are also more straightforward to work with when practicing manual exposure at the maximum aperture since no compensation for lost light is required during zooming.
tdTomatoexcitation emission
A prime or fixed focal length lens has a set focal length that cannot be changed. There are several critical differences between prime and zoom lenses that you should know. Prime lenses are generally smaller, faster, and have better optical characteristics than zoom lenses. Despite this, photographers frequently opt to shoot with zoom lenses because of their convenience: a single lens can replace several of the most popular focal length prime lenses. This is especially important when you’d prefer to pack light, such as during a trip or a hike.
Fluorescence polarization detection with the CLARIOstar® microplate reader to investigate influenza virus’s RNA polymerase activity is highly sensitive and HTS-compatible. Read more here.
In most cases an eye relief of 14 to 15mm is needed for the average eyeglass wearer to be comfortable. Ideally though you should look for binoculars and ...
mCherrychannel
reflected in this stunning window by the diamond-shaped pane towards the left-hand side, hand-painted with. Category. Early 20th Century Welsh Edwardian Windows.
The results in fig. 2 and 3 confirm a linear relationship between the percentage of GFP+/mcherry+ HeLas (= transfection efficiency) and the measured signal for GFP or mcherry fluorescence with high accuracy (R² = 0,9997 and 0,9998) and precision (%CV = 10.5 and 5.2).
If cells are stably transfected with the genetic blueprint for fluorescent proteins, they will consistently express these reporters. Thereupon, a fluorescence microscope or a fluorescence microplate reader can be used to detect them. By mixing fluorescent with wild type (WT) cells, transfection efficiency can be simulated to different extents (fig.1). Here, HeLa cells were transfected with the genetic sequences for GFP and mcherry and mixed in increasing ratios with WT-HeLas without fluorescent reporter to simulate transfection efficiency.
It’s important to understand that the degree to which the focal length magnifies an object does not depend on your camera or the size of its image sensor. Assuming a fixed subject and subject distance, every lens of the same focal length will project an image of your subject at the same scale. For example, if a 35 mm lens casts a 1.2 cm image of a person, that image will remain 1.2 cm high regardless of your camera’s sensor format. However, on a Micro Four Thirds format camera, the image of that person will fill the height of the frame, whereas it will occupy half the height of a full-frame image sensor, and about one-third the height of a medium format image sensor. As you progress from a smaller sensor to a larger one, the 1.2 cm high projection of the person remains unchanged, but it occupies a smaller part of the total frame. Therefore, although the absolute size of the image will stay constant across varying image sensor formats, its size in proportion to each image sensor format will be different.
Thorlabs' N-BK7, N-SF11, UV-fused silica, calcium fluoride, and zinc selenide bi-concave lenses are popular for many applications. Bi-concave lenses have a ...
Subject size is directly proportional to the focal length of the lens. For example, if you photograph a soccer player kicking a ball, then switch to a lens that is twice the focal length of the first, the rendered size of every element in your image, from the person to the ball, will be doubled in size along the linear dimensions.