Trade Fairs for Machine Construction in Canada - equipment trade shows
Spectralonwhite paint
The purposes of optical microscopes are broadly classified into two; "biological-use" and "industrial-use". Using this classification method, objective lenses are classified into "biological-use" objectives and "industrial-use" objectives. A common specimen in a biological use is fixed in place on the slide glass, sealing it with the cover glass from top. Since a biological-use objective lens is used for observation through this cover glass, optical design is performed in consideration of the cover glass thickness (commonly 0.17mm). Meanwhile, in an industrial use a specimen such as a metallography specimen, semiconductor wafer, and an electronic component is usually observed with nothing covered on it. An industrial-use objective lens is optically designed so as to be optimal for observation without any cover glass between the lens end and a specimen.
Photography or image pickup with a video camera has been common in microscopy and thus a clear, sharp image over the entire field of view is increasingly required. Consequently, Plan objective lenses corrected satisfactorily for field curvature aberration are being used as the mainstream. To correct for field curvature aberration, optical design is performed so that Petzval sum becomes 0. However, this aberration correction is more difficult especially for higher-magnification objectives. (This correction is difficult to be compatible with other aberration corrections) An objective lens in which such correction is made features in general powerful concave optical components in the front-end lens group and powerful concave ones in the back-end group.
Spectralon reflectance material is a thermoplastic resin that gives the highest diffuse reflectance of any known material or coating over the UV-VIS-NIR region of the spectrum and exhibits highly lambertian behavior. It can be machined into a wide variety of shapes for the construction of optical components such as calibration targets, integrating spheres and laser cavities.
Terms Of Use | Privacy Notice | Cookies | Cookie Settings | About Us | Careers | Careers | Sitemap
Spectralonpaint
The material has a hardness roughly equal to that of high-density polyethylene and is thermally stable to >350° C. It is chemically inert to all but the most powerful bases such as sodium amide and organo-sodium or lithium compounds. The material is extremely hydrophobic. Gross contamination of the material or marring of the optical surface can be remedied by sanding under a stream of running water. This surface refinishing both restores the original topography of the surface and returns the material to its original reflectance. Weathering tests on the material show no damage upon exposure to atmospheric UV flux. The material shows no sign of optical or physical degradation after long-term immersion testing in sea water.
Labsphere
Axial chromatic aberration correction is divided into three levels of achromat, semiapochromat (fluorite), and apochromat according to the degree of correction. The objective lineup is divided into the popular class to high class with a gradual difference in price. An objective lens for which axial chromatic aberration correction for two colors of C ray (red: 656,3nm) and F ray (blue: 486.1nm) has been made is known as Achromat or achromatic objective. In the case of Achromat, a ray except for the above two colors (generally violet g-ray: 435.8nm) comes into focus on a plane away from the focal plane. This g ray is called a secondary spectrum. An objective lens for which chromatic aberration up to this secondary spectrum has satisfactorily been corrected is known as Apochromat or apochromatic objective. In other words, Apochromat is an objective for which the axial chromatic aberration of three colors (C, F, and g rays) has been corrected. The following figure shows the difference in chromatic aberration correction between Achromat and Apochromat by using the wavefront aberration. This figure proves that Apochromat is corrected for chromatic aberration in wider wavelength range than Achromat is.
Spectralon reflectance material gives the highest diffuse reflectance of any known material or coating over the UV-VIS-NIR region of the spectrum. The reflectance is generally >99% over a range from 400 to 1500 nm and >95% from 250 to 2500 nm. Surface or subsurface contamination may lower the reflectance at the extreme upper and lower ends of the spectral range. The material is also highly lambertian at wavelengths from 0.257 µm to 10.6 µm, although the material exhibits much lower reflectance at 10.6 µm due to absorbance by the resin.
The surface and immediate subsurface structure of Spectralon exhibits highly lambertian behavior. The porous network of thermoplastic produces multiple reflections in the first few tenths of a millimeter of Spectralon. Although it is extremely hydrophobic, this “open structure” readily absorbs non-polar solvents, greases and oils. Impurities are difficult to remove from Spectralon; thus, the material should be kept free from contaminants to maintain its reflectance properties. The use of Spectralon should be limited to the UV-VIS-NIR. Spectralon exhibits absorbances at 2800 nm, then absorbs strongly (<20% reflectance) from 5.4 to 8 µm.
A variety of microscopy methods have been developed for optical microscopes according to intended purposes. The dedicated objective lenses to each microscopy method have been developed and are classified according to such a method. For example, "reflected darkfield objective (a circular-zone light path is applied to the periphery of an inner lens)", "Differential Interference Contrast (DIC) objective (the combination of optical properties with a DIC( Nomarski)prism is optimized by reducing lens distortions)", "fluorescence objective (the transmittance in the near-ultraviolet region is improved)", "polarization objective (lens distortions are drastically reduced)", and "phase difference objective (a phase plate is built in) are available.
Lambertian surface
How isSpectralonmade
Three grades of Spectralon reflectance material are available: optical-grade, laser-grade and space-grade. Optical-grade Spectralon is characterized by a high-reflectance and lambertian behavior over the UV-VIS-NIR wavelength region. Laser-grade Spectralon offers the same physical characteristics as optical-grade materials but is a different formulation of resin that gives enhanced performance when used in laser pump cavities. Space-grade Spectralon combines high-reflectance with an extremely lambertian reflectance profile and is the material of choice for terrestrial remote sensing applications.
With an accout for my.chemeurope.com you can always see everything at a glance – and you can configure your own website and individual newsletter.
Non Lambertian effects
Spectralon's optical properties make it ideal as a reference surface in remote sensing. For instance, it is used to obtain leaf reflectance and bidirectional reflectance distribution function (BRDF) in the laboratory. It can also be applied to obtain vegetation fluorescence using the Fraunhofer lines [1]. Basically spectralon allows removing the contributions in the emitted light that are not directly linked to the surface (leaf) properties but to geometrical factors.
Meanwhile, an objective lens for which the degree of chromatic aberration correction to the secondary spectrum (g ray) is set to medium between Achromat and Apochromat is known as Semiapochromat (or Flulorite).
Terms Of Use | Privacy Notice | Cookies | Cookie Settings | About Us | Imprint | Careers | Careers | Sitemap
In the optical design of microscope objectives, commonly the larger is an N.A. and the higher is a magnification, the more difficult to correct the axial chromatic aberration of a secondary spectrum. In addition to axis chromatic aberration, various aberrations and sine condition must be sufficiently corrected and therefore the correction of the secondary spectrum is far more difficult to be implemented. As the result, a higher-magnification apochromatic objective requires more pieces of lenses for aberration correction. Some objectives consist of more than 15 pieces of lenses. To correct the secondary spectrum satisfactorily, it is effective to use "anomalous dispersion glass" with less chromatic dispersion up to the secondary spectrum for the powerful convex lens among constituting lenses. The typical material of this anomalous dispersion glass is fluorite (CaF2) and has been adopted for apochromatic objectives since a long time ago, irrespective of imperfection in workability. Recently, optical glass with a property very close to the anomalous dispersion of fluorite has been developed and is being used as the mainstream in place of fluorite.
An objective lens is the most important optical unit that determines the basic performance/function of an optical microscope To provide an optical performance/function optimal for various needs and applications (i.e. the most important performance/function for an optical microscope), a wide variety of objective lenses are available according to the purpose.
An optical microscope is used with multiple objectives attached to a part called revolving nosepiece. Commonly, multiple combined objectives with a different magnification are attached to this revolving nosepiece so as to smoothly change magnification from low to high only by revolving the nosepiece. Consequently, a common combination lineup is comprised from among objectives of low magnification (5x, 10x), intermediate magnification (20x, 50x), and high magnification (100x). To obtain a high resolving power particularly at high magnification among these objectives, an immersion objective for observation with a dedicated liquid with a high refractive index such as immersion oil or water charged between the lens end and a specimen is available. Ultra low magnification (1.25x, 2.5x) and ultra high magnification (150x) objectives are also available for the special use.
Objective lenses are roughly classified basically according to the intended purpose, microscopy method, magnification, and performance (aberration correction). Classification according to the concept of aberration correction among those items is a characteristic way of classification of microscope objectives.