Super Lube Silicone O-Ring Grease-3oz Tube-Case of 12 - o-ring grease
Dielectric mirror3M
The material is made by layering alternative high and low refractive index transparent polymers with thickness tuned so that reflections constructively interfere.
In 1665, Robert Hooke published Micrographia, a book that illustrated highly magnified items that included insects and plants. This book spurred on interest in the sciences to examine the microscopic world using lenses but is also notable for Hooke’s observations of cork where he used the word “cell” in a biological sense for the first time.
Dielectric Mirrortape
I read all the stuff on the Hidden Television web site including the free downloadable specification .pdf file. Although the mirror is called “Dielectric”; I have doubts about that. It looks to me the mirror they use is made by coating a thin sheet of flat float-glass with some standard reflective material. According to the downloaded .pdf specification file, the mirror has 25% transmittance and 71% reflectance. I think a real dielectic mirror would have much better specifications, especially in the reflectance number. Yeah just remember, this is the Internet – Mmmkay ;-)
The dielectric mirrors we used in ring laser gyros in the ’80s had more 9s in the reflectivity. I didn’t have the clearance to find out how many beyond 99.99
More 9s at a specific wavelength, right?, and I bet transparent at others – there’s that tuning of the layers again. It’s cool stuff.
The lowest magnification objective lens (usually 4X or 5X) is referred to as a scanning lens. There is also usually a low power lens at 10X and a higher magnification lens at 40X. There may be a higher magnification lens at 100X but these usually require oil to function properly and are often reserved for microbiology labs.
The LibreTexts libraries are Powered by NICE CXone Expert and are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. Legal. Accessibility Statement For more information contact us at info@libretexts.org.
Dielectric mirroruses
Though van Leeuwenhoek’s apparatus was simple, the magnifying power of his lenses and his curiosity enabled him to perform great scientific observations on the microscopic world. He was ridiculed for fabricating his observations of protists at first. Ever the scientist, van Leeuwenhoek examined samples of his own diarrhea to discover Giardia intestinalis. While he did not make the connection of the causative nature of this microorganism, he described the details of the way this organism could propel itself through the medium in great detail.
1. Examine the slide of colored threads under scanning power so the cross-point of the threads is at the center of the field.
By using our website and services, you expressly agree to the placement of our performance, functionality and advertising cookies. Learn more
Dielectric mirrorfor sale
I was gonna say they should combine this with that the research material they made from studying fireflies. Might get the brightest of lights from the most minimal of power.
Turns out something that thin and reflective can be hard to find. It also makes a little flashlight if you roll a tube of the material and pinch the back end together. The light that would have exited the rear of the tube now bounces around until it exits from the front, making it noticeably bright. The film comes from 3M, and apparently, they were surprised about the optical properties, too.
Magnification is the process of enlarging the appearance of an object. We calculate the magnification of an object by indicating the fold change in size. So if something appears to be double the size of the real item, then it is obviously magnified 2X. Because there is a magnification by the eye-piece (ocular lens), as well as the objective lenses, our final magnification of an item is the product of those two lenses.
Material like this help spread light behind cell phone screens. Efficiency is important because everyone wants longer battery life with their phones. We aren’t sure what we want to do with this, but it must be something. Our guess is since the reflections take place in different layers of the polymer, it wouldn’t make a good telescope, but we could be wrong. The tape isn’t dirt cheap, but it doesn’t seem outrageously priced if you can find it.
In an even more extreme close-up (higher magnification), we would have difficulty focusing on both the eyes and beak since there is depth and distance between those features.
In image 1, we can see a model of DNA on a table with a water bottle and a large area of the room. Image 2 displays less of the room in the background but the DNA model is larger in appearance because the magnification is greater. In image 3, we no longer see evidence of a door and the DNA model is much larger than before. In image 4, we no longer see the table the model and water bottle rest upon. While the last image is largest, we see less of the surrounding objects. We have higher magnification at the cost of the field of view. FOV is inversely related to the magnification level.
Paradoxically, the mirror is made of several layers of transparent film. The video explains how a bunch of transparent layers can reflect light.
Dielectric mirrorGlass
In a microscope, we ordinarily observe things within a circular space (or field) as defined by the lenses. We refer to this observable area as the field of view (FOV). Understanding the size of the FOV is important because actual sizes of the object can be calculated using the Magnification of the lenses.
We notice that when we observe 3 overlapping threads of different color under a microscope, we can focus on one thread at a time. Similarly, when we zoom in a great deal on the DNA model below, we notice that the print on the water bottle is not sharp.
So if almost perfectly reflective… That implies that it could make a good insulator, or keep things cool if all the ‘heat’ is reflected away? At any rate it appears to be a really neat matter that should have a lot of applications.
3M makes lots of fun films for LCD construction, including prismatic and one of my personal favorites, a film that’s fairly reflective except at one polarization, where it’s transparent. All of these small optimizations add up when you’re building LCD backlights, and lead to less heat and more battery life for a given brightness.
So I guess if youtubers do those long ads n their video that YT does actually get a cut from the advertiser? Just like they do with inserted separate ads. Except now its harder to block, which makes this kind of advertising actually pretty hostile.
Dielectric mirrorprice
This page titled 1.2: Microscopy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Bio-OER.
A good application might be mirrors for focusing solar energy onto photoelectric cells allowing for more usage of the expensive cell. Main issue would be heat management at the reflector and on the cell itself. Possibly also useful to redirect sunlight for household lighting.
matter … material …. To bad ya can’t edit :) . One other thing… If you pinch the top the tube off real fast, is the light photons/waves ‘trapped’ :) and just bouncing around in the tube looking for a way out?
Dielectric mirrorfor TV
From the Hidden Television web site: “Did you know? For over 15 years, Hidden Television has been the only mirror TV company to offer guaranteed quality. We work with you to order the perfect TV, and back up our craftsmanship with returns and exchanges. We make shopping for a mirror TV fast & easy!”
The Dutch tradesman Antonie van Leeuwenhoek used high power magnifying lenses to examine the parts of insects and to examine the quality of fabric in his drapery business. He began to experiment with pulling glass to generate lenses and developed a simple microscope to observe samples. Using a simple single lens with a specimen mounted on a point, he was able to identify the first microscopic “animalcules” (little animals) that will be later known as protozoa (original animals).
Well,doing the math, it is 99.5 reflective so it is absorbing .5 percent of the photons on each bounce. At the speed of light in that small a volume, it would all absorb pretty quickly. So no, it is not an effective bag of light.
Heat radiation at room temperatures corresponds to a much longer infrared wavelengths than visible light. This mirror is specifically designed for optical range so it most likely will be terrible at “heat” reflection. If you want a film heat insulator, it was invented years ago, google Mylar aka Space Blanket. It relies on reflection from a metal surface, so I wonder if in the future dielectric approach will improve it
Dielectric mirrorsheet
Dielectric mirror films or sheets are (claimed to be) used to make what looks like a TV when it is on and displaying a picture, or like a wall mirror when the TV is off. In fact there’s a company called Hidden Television that custom builds hidden televisions that use a (supposed) dielectric mirror, or they sell just the dielectric mirrors alone if you want to DIY your own Hidden Television.
Highest Magnification with shallow depth of field. Notice how the label on the water bottle is blurry while the lettering on the DNA model is sharp.
Unlike van Leeuwenhoek’s single-lens microscope, we now combine the magnifying power of multiple lenses in what is called a compound microscope.
We know that the water bottle is behind the DNA molecule. Under the microscope, the threads of differing color are also stacked on top of each other. We recognize that they are on different planes because they are three dimensional. Each thread has depth and does not occupy the same exact space. If we focus on the print of the water bottle on the image above, we would no longer see the lettering on the DNA molecule sharply. We refer to this concept as Depth of Field (DOF). Under the microscope, at low magnification, we can make out fewer finer details. However, most items appear on the same plane in this case and or comparably sharp. But as we increase the magnification and see finer details, the distances between the various planes in view become more apparent. We can see a similar phenomenon at low magnification of the DNA model. At the low magnification, we may not be able to read the print on the water bottle, but the bottle and DNA molecule are of a similar distance from our view that the small difference in apparent depth is not as noticeable. We can still draw on other visual cues to know that the bottle is behind the model, but the sharpness of both items are equivalent.
I.e. most likely it works pretty well for near IR and unless the polymers are particularly opaque to IR you probably have decent scope to optimize for wavelength.
We knew the mirrors in our house were not really very good mirrors, optically speaking. Your mirror eats up 20 to 40 percent of the light that hits it. High-quality first-surface mirrors are better, but [Action Lab] has a video (see below) of something really different: a polymer dielectric mirror with 99.5% reflectivity. In addition, it has no Brewster angle — light that hits it from any angle will reflect.
In our lab, we look at some pond water. What do we see? Why is this significant? How does the microscope help us study these items? What is the utility of the concepts of magnification, FOV, and DOF when we use microscopes to study biological samples?