Barclay, M. S., Quincy, T. J., Williams-Young, D. B., Caricato, M. & Elles, C. G. Accurate assignments of excited-state resonance Raman spectra: a benchmark study combining experiment and theory. J. Phys. Chem. A 121, 7937–7946 (2017).

Hall, C. R. et al. Femtosecond stimulated Raman study of the photoactive flavoprotein AppABLUF. Chem. Phys. Lett. 683, 365–369 (2017).

Verma, P. et al. Excited-state symmetry breaking in quadrupolar pull–push–pull molecules: dicyanovinyl vs. cyanophenyl acceptors. Phys. Chem. Chem. Phys. 25, 22689–22699 (2023).

Wang, Z., Jiang, J., Huang, Y. & Liu, W. Tracking twisted intramolecular charge transfer and isomerization dynamics in 9-(2,2-dicyanovinyl) julolidine using femtosecond stimulated Raman spectroscopy. Chin. J. Chem. Phys. 36, 397–403 (2023).

Kukura, P., McCamant, D. W. & Mathies, R. A. Femtosecond time-resolved stimulated Raman spectroscopy of the S2 (1Bu+) excited state of β-carotene. J. Phys. Chem. A 108, 5921–5925 (2004).

Molesky, B. P., Guo, Z. & Moran, A. M. Femtosecond stimulated Raman spectroscopy by six-wave mixing. J. Chem. Phys. 142, 212405 (2015).

Yoshizawa, M., Hattori, Y. & Kobayashi, T. Femtosecond time-resolved resonance Raman gain spectroscopy in polydiacetylene. Phys. Rev. B 49, 13259–13262 (1994). To our knowledge, the first demonstration of femtosecond stimulated Raman scattering (FSRS) with 300-fs temporal precision.

Fang, C., Frontiera, R. R., Tran, R. & Mathies, R. A. Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature 462, 200–204 (2009). To our knowledge, this article presents the first FSRS application to track nuclear motion underlying proton transfer.

Bera, K., Douglas, C. J. & Frontiera, R. R. Femtosecond stimulated Raman spectroscopy-guided library mining leads to efficient singlet fission in rubrene derivatives. Chem. Sci. 12, 13825–13835 (2021).

Nakamura, R., Hamada, N., Abe, K. & Yoshizawa, M. Ultrafast hydrogen-bonding dynamics in the electronic excited state of photoactive yellow protein revealed by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 116, 14768–14775 (2012).

Zhou, J., Yu, W. & Bragg, A. E. Structural relaxation of photoexcited quaterthiophenes probed with vibrational specificity. J. Phys. Chem. Lett. 6, 3496–3502 (2015).

The stimulated Raman scattering time-domain analogue, in which a full scan of the temporal delay between two ultrashort pulses is required to record a single Raman spectrum in the time domain. The addition of an actinic pump turns impulsive stimulated Raman into a time-resolved technique capable of probing excited-state dynamics, similarly to femtosecond stimulated Raman scattering.

Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013).

Lim, S., Chon, B., Rhee, H. & Cho, M. Spectral modulation of stimulated Raman scattering signal: beyond weak Raman pump limit. J. Raman Spectrosc. 49, 607–620 (2018).

Frontiera, R. R., Dasgupta, J. & Mathies, R. A. Probing interfacial electron transfer in coumarin 343 sensitized TiO2 nanoparticles with femtosecond stimulated Raman. J. Am. Chem. Soc. 131, 15630–15632 (2009).

Ploetz, E., Marx, B., Klein, T., Huber, R. & Gilch, P. A 75 MHz light source for femtosecond stimulated Raman microscopy. Opt. Express 17, 18612 (2009).

Marx, B., Czerwinski, L., Light, R., Somekh, M. & Gilch, P. Multichannel detectors for femtosecond stimulated Raman microscopy — ideal and real ones. J. Raman Spectrosc. 45, 521–527 (2014).

Nature Reviews Methods Primers thanks Chong Fang, David McCamant and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Bending a fiber optic cable will degrade its signal. The light inside will reflect off the walls until a critical radius, then start leaking out ...

Yoon, S., Kukura, P., Stuart, C. M. & Mathies, R. A. Direct observation of the ultrafast intersystem crossing in tris(2,2′-bipyridine)ruthenium(II) using femtosecond stimulated Raman spectroscopy. Mol. Phys. 104, 1275–1282 (2006).

Anderson, K. E. H., Sewall, S. L., Cooney, R. R. & Kambhampati, P. Noise analysis and noise reduction methods in kilohertz pump–probe experiments. Rev. Sci. Instrum. 78, 073101 (2007).

Hu, S., Morris, I. K., Singh, J. P., Smith, K. M. & Spiro, T. G. Complete assignment of cytochrome c resonance Raman spectra via enzymic reconstitution with isotopically labeled hemes. J. Am. Chem. Soc. 115, 12446–12458 (1993).

Kloz, M., van Grondelle, R. & Kennis, J. T. M. Wavelength-modulated femtosecond stimulated Raman spectroscopy — approach towards automatic data processing. Phys. Chem. Chem. Phys. 13, 18123 (2011).

Yoon, S. et al. Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump–probe time delay. J. Chem. Phys. 122, 024505 (2005).

Lafuente, B., Downs, R. T., Yang, H. & Stone, N. in Highlights in Mineralogical Crystallography (eds Armbruster, T. & Danisi, R. M.) (De Gruyter, 2015).

CameraLensMountAdapter

Gautam, R., Vanga, S., Ariese, F. & Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2, 8 (2015).

Fremout, W. & Saverwyns, S. Identification of synthetic organic pigments: the role of a comprehensive digital Raman spectral library. J. Raman Spectrosc. 43, 1536–1544 (2012).

Glenn, R. & Dantus, M. Single broadband phase-shaped pulse stimulated Raman spectroscopy for standoff trace explosive detection. J. Phys. Chem. Lett. 7, 117–125 (2016).

Kukura, P., McCamant, D. W., Yoon, S., Wandschneider, D. B. & Mathies, R. A. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 310, 1006–1009 (2005).

Nikoncamera mount types

Batignani, G., Fumero, G., Mukamel, S. & Scopigno, T. Energy flow between spectral components in 2D broadband stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 17, 10454–10461 (2015).

Introduction (T.S., G.B., C.F., G.F. and M.M.); Experimentation (T.S., G.B., C.F., G.F. and M.M.); Results (T.S., G.B., C.F., G.F. and M.M.); Applications (T.S., G.B., C.F., G.F. and M.M.); Reproducibility and data deposition (T.S., G.B., C.F., G.F. and M.M.); Limitations and optimizations (T.S., G.B., C.F., G.F. and M.M.); Outlook (T.S., G.B., C.F., G.F. and M.M.); overview of the Primer (T.S.).

Farrow, G. A. et al. On the intersystem crossing rate in a platinum(ii) donor–bridge–acceptor triad. Phys. Chem. Chem. Phys. 23, 21652–21663 (2021).

Cinemacameralens mounts

Sciortino, G. et al. Four-channel differential lock-in amplifiers with autobalancing network for stimulated Raman spectroscopy. IEEE J. Solid State Circuits 56, 1859–1870 (2021).

The authors are grateful to G. Cerullo, P. Kukura, S. Mukamel and M. H. Vos for several inspiring discussions. They acknowledge early contributions by E. Pontecorvo to the planning and development of their first FSRS prototype. G.B. acknowledges funding from the PRIN 2022 Project (Dynamat) (grant number 2022PR7CCY).

Pontecorvo, E. et al. Femtosecond stimulated Raman spectrometer in the 320–520 nm range. Opt. Express 19, 1107–1112 (2011). To our knowledge, this article is the first demonstration of a tunable Raman pump FSRS with a second harmonic generation spectral compression approach.

Bera, K., Douglas, C. J. & Frontiera, R. R. Femtosecond Raman microscopy reveals structural dynamics leading to triplet separation in rubrene singlet fission. J. Phys. Chem. Lett. 8, 5929–5934 (2017).

Krueger, T. D. et al. Ultrafast triplet state formation in a methylated fungi-derived pigment: toward rational molecular design for sustainable optoelectronics. J. Phys. Chem. C 125, 17565–17572 (2021).

Al Osipov, V., Asban, S. & Mukamel, S. Time and frequency resolved transient-absorption and stimulated-Raman signals of stochastic light. J. Chem. Phys. 151, 044113 (2019).

Harbola, U., Umapathy, S. & Mukamel, S. Loss and gain signals in broadband stimulated-Raman spectra: theoretical analysis. Phys. Rev. A 88, 11801 (2013).

Karmakar, S. et al. Transient Raman snapshots of the twisted intramolecular charge transfer state in a stilbazolium dye. J. Phys. Chem. Lett. 11, 4842–4848 (2020).

Weigel, A. et al. Femtosecond stimulated Raman spectroscopy of flavin after optical excitation. J. Phys. Chem. B 115, 3656–3680 (2011).

Camera mount typesexplained

Wang, Z. et al. Mapping the complete photocycle that powers a large Stokes shift red fluorescent protein. Angew. Chem. Int. Ed. 62, e202212209 (2023).

Typesofcameratripod mounts

The profile of the pulse’s intensity as a function of time. It describes how the intensity of the pulse varies over time, characterizing the peak intensity, the duration and any modulations or variations in intensity within that duration.

Krueger, T. D., Tang, L. & Fang, C. Delineating ultrafast structural dynamics of a green-red fluorescent protein for calcium sensing. Biosensors 13, 218 (2023).

Ferrante, C., Pontecorvo, E., Cerullo, G., Vos, M. H. & Scopigno, T. Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin. Nat. Chem. 8, 1137–1143 (2016).

Zhu, L., Liu, W. & Fang, C. A versatile femtosecond stimulated Raman spectroscopy setup with tunable pulses in the visible to near infrared. Appl. Phys. Lett. 105, 041106 (2014).

Chergui, M., Beye, M., Mukamel, S., Svetina, C. & Masciovecchio, C. Progress and prospects in nonlinear extreme-ultraviolet and X-ray optics and spectroscopy. Nat. Rev. Phys. 5, 578–596 (2023).

Disclaimer: Otto Chemie Pvt. Ltd. - makes every effort to ensure that the information displayed on this web site is accurate and complete, however it is not ...

Many commonly used IR LED or laser diode illuminators operate at or very close to 940nm. Bi940 filters feature a much narrower band design vs.

Barclay, M. S., Caricato, M. & Elles, C. G. Femtosecond stimulated Raman scattering from triplet electronic states: experimental and theoretical study of resonance enhancements. J. Phys. Chem. A 123, 7720–7732 (2019).

Mandal, A., Erramilli, S. & Ziegler, L. D. Origin of dispersive line shapes in plasmonically enhanced femtosecond stimulated Raman spectra. J. Phys. Chem. C 120, 20998–21006 (2016).

Würthwein, T., Lüpken, N. M., Irwin, N. & Fallnich, C. Mitigating cross-phase modulation artifacts in femtosecond stimulated Raman scattering. J. Raman Spectrosc. 51, 2265–2271 (2020).

Ruchira Silva, W. & Frontiera, R. R. Excited state structural evolution during charge-transfer reactions in betaine-30. Phys. Chem. Chem. Phys. 18, 20290–20297 (2016).

Batignani, G. et al. Temperature dependence of Coherent versus spontaneous Raman Scattering. Preprint at https://arxiv.org/abs/2405.00521 (2024).

Hall, C. R. et al. Ultrafast dynamics in light-driven molecular rotary motors probed by femtosecond stimulated Raman spectroscopy. J. Am. Chem. Soc. 139, 7408–7414 (2017).

Buchanan, L. E. et al. Surface-enhanced femtosecond stimulated Raman spectroscopy at 1 MHz repetition rates. J. Phys. Chem. Lett. 7, 4629–4634 (2016).

Bestcamera mount types

Prince, R. C., Frontiera, R. R. & Potma, E. O. Stimulated Raman scattering: from bulk to nano. Chem. Rev. 117, 5070–5094 (2017).

Grumstrup, E. M. et al. Frequency modulated femtosecond stimulated Raman spectroscopy of ultrafast energy transfer in a donor–acceptor copolymer. J. Phys. Chem. B 117, 8245–8255 (2013).

Batignani, G. et al. Modeling the ultrafast response of two-magnon Raman excitations in antiferromagnets on the femtosecond timescale. Ann. Phys. 531, 1900439 (2019).

Han, F., Liu, W. & Fang, C. Excited-state proton transfer of photoexcited pyranine in water observed by femtosecond stimulated Raman spectroscopy. Chem. Phys. 422, 204–219 (2013).

Zhao, J., Lui, H., McLean, D. I. & Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 61, 1225–1232 (2007).

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Barak, A. et al. Solvent polarity governs ultrafast structural dynamics: a case study of 4-dimethylamino-4′-carbomethoxydiphenylacetylene. J. Phys. Chem. C 127, 5855–5865 (2023).

Chen, C. et al. Unveiling structural motions of a highly fluorescent superphotoacid by locking and fluorinating the GFP chromophore in solution. J. Phys. Chem. Lett. 8, 5921–5928 (2017).

Diaz, S. A. & McCamant, D. W. Diffuse reflectance-based femtosecond stimulated Raman spectroscopy of opaque suspensions. Anal. Chem. 95, 15856–15860 (2023).

Hart, S. M., Silva, W. R. & Frontiera, R. R. Femtosecond stimulated Raman evidence for charge-transfer character in pentacene singlet fission. Chem. Sci. 9, 1242–1250 (2018).

Audier, X., Heuke, S., Volz, P., Rimke, I. & Rigneault, H. Noise in stimulated Raman scattering measurement: from basics to practice. APL Photon. 5, 011101 (2020).

Potma, E. O. & Mukamel, S. Theory of coherent Raman scattering. In Coherent Raman Scattering Microscopy (eds Cheng, J.-X. & Xie, X. S.) (CRC Press, 2012).

Weigel, A. & Ernsting, N. P. Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 114, 7879–7893 (2010).

Kovalenko, S. A., Dobryakov, A. L. & Ernsting, N. P. An efficient setup for femtosecond stimulated Raman spectroscopy. Rev. Sci. Instrum. 82, 063102 (2011).

Barton, S., Alakkari, S., O’Dwyer, K., Ward, T. & Hennelly, B. Convolution network with custom loss function for the denoising of low SNR Raman spectra. Sensors 21, 4623 (2021).

Sun, Z., Lu, J., Zhang, D. H. & Lee, S.-Y. Quantum theory of (femtosecond) time-resolved stimulated Raman scattering. J. Chem. Phys. 128, 144114 (2008).

Frontiera, R. R., Henry, A.-I., Gruenke, N. L. & Van Duyne, R. P. Surface-enhanced femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 2, 1199–1203 (2011). This article is an early demonstration of surface-enhanced FSRS.

Stamm, J. A. & Dantus, M. A comparison of strategies for state‐selective coherent Raman excitation. J. Raman Spectrosc. 52, 2029–2037 (2021).

Kuramochi, H., Fujisawa, T., Takeuchi, S. & Tahara, T. Broadband stimulated Raman spectroscopy in the deep ultraviolet region. Chem. Phys. Lett. 683, 543–546 (2017). This article describes FSRS with a tunable ultraviolet pump.

Henstridge, M., Först, M., Rowe, E., Fechner, M. & Cavalleri, A. Nonlocal nonlinear phononics. Nat. Phys. 18, 457–461 (2022). This article describes the probing phonon polariton via FSRS upon terahertz actinic pump excitation.

Wei, J. et al. Tracking ultrafast structural dynamics in a dual-emission anti-Kasha-active fluorophore using femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 12, 4466–4473 (2021).

Batignani, G., Ferrante, C., Fumero, G. et al. Femtosecond stimulated Raman spectroscopy. Nat Rev Methods Primers 4, 34 (2024). https://doi.org/10.1038/s43586-024-00314-6

Kuramochi, H., Takeuchi, S., Kamikubo, H., Kataoka, M. & Tahara, T. Skeletal structure of the chromophore of photoactive yellow protein in the excited state investigated by ultraviolet femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 125, 6154–6161 (2021).

Quincy, T. J., Barclay, M. S., Caricato, M. & Elles, C. G. Probing dynamics in higher-lying electronic states with resonance-enhanced femtosecond stimulated Raman spectroscopy. J. Phys. Chem. A 122, 8308–8319 (2018).

Umapathy, S., Mallick, B. & Lakshmanna, A. Mode-dependent dispersion in Raman line shapes: observation and implications from ultrafast Raman loss spectroscopy. J. Chem. Phys. 133, 024505 (2010).

Chen, C. et al. Photoinduced proton transfer of GFP-inspired fluorescent superphotoacids: principles and design. J. Phys. Chem. B 123, 3804–3821 (2019).

Mehlenbacher, R. D., Lyons, B., Wilson, K. C., Du, Y. & McCamant, D. W. Theoretical analysis of anharmonic coupling and cascading Raman signals observed with femtosecond stimulated Raman spectroscopy. J. Chem. Phys. 131, 244512 (2009).

Liu, W. et al. Tracking ultrafast vibrational cooling during excited-state proton transfer reaction with anti-Stokes and Stokes femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 8, 997–1003 (2017).

Raman transitions occurring from vibrationally excited levels (n > 0) to the subsequent higher state (n + 1), typically resulting in a red-shifted line with respect to the fundamental transition (from n = 0 to n = 1).

Fumero, G. et al. Retrieving genuine nonlinear Raman responses in ultrafast spectroscopy via deep learning. Preprint at https://arxiv.org/abs/2309.16933 (2023).

Kayal, S., Roy, K. & Umapathy, S. Femtosecond coherent nuclear dynamics of excited tetraphenylethylene: ultrafast transient absorption and ultrafast Raman loss spectroscopic studies. J. Chem. Phys. 148, 024301 (2018).

Marangoni, M. A. et al. Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals. Opt. Express 15, 8884 (2007).

Zong, C. & Cheng, J. X. Origin of dispersive line shapes in plasmon-enhanced stimulated Raman scattering microscopy. Nanophotonics 10, 617–625 (2020).

Silva, W. R., Keller, E. L. & Frontiera, R. R. Determination of resonance Raman cross-sections for use in biological SERS sensing with femtosecond stimulated Raman spectroscopy. Anal. Chem. 86, 7782–7787 (2014).

Cameralensmountchart

Frostig, H., Bayer, T., Dudovich, N., Eldar, Y. C. & Silberberg, Y. Single-beam spectrally controlled two-dimensional Raman spectroscopy. Nat. Photon. 9, 339–343 (2015).

Polli, D., Kumar, V., Valensise, C. M., Marangoni, M. & Cerullo, G. Broadband coherent Raman scattering microscopy. Laser Photon Rev. 12, 1800020 (2018).

Fumero, G. et al. Two-dimensional impulsively stimulated resonant Raman spectroscopy of molecular excited states. Phys. Rev. X 10, 11051 (2020).

Wahl, J., Sjödahl, M. & Ramser, K. Single-step preprocessing of Raman spectra using convolutional neural networks. Appl. Spectrosc. 74, 427–438 (2020).

Ellis, S. R., Hoffman, D. P., Park, M. & Mathies, R. A. Difference bands in time-resolved femtosecond stimulated Raman spectra of photoexcited intermolecular electron transfer from chloronaphthalene to tetracyanoethylene. J. Phys. Chem. A 122, 3594–3605 (2018).

Batignani, G., Fumero, G., Mai, E., Martinati, M. & Scopigno, T. Stimulated Raman lineshapes in the large light–matter interaction limit. Opt. Mater. X 13, 100134 (2022).

Han, X. X., Rodriguez, R. S., Haynes, C. L., Ozaki, Y. & Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 1, 87 (2022).

Marangoni, M. et al. Synthesis of picosecond pulses by spectral compression and shaping of femtosecond pulses in engineered quadratic nonlinear media. Opt. Lett. 34, 241–243 (2009).

Takaya, T. & Iwata, K. Development of a femtosecond time-resolved near-IR multiplex stimulated Raman spectrometer in resonance with transitions in the 900–1550 nm region. Analyst 141, 4283–4292 (2016).

Chen, C. et al. Structural characterization of fluorescent proteins using tunable femtosecond stimulated Raman spectroscopy. Int. J. Mol. Sci. 24, 11991 (2023).

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dorfman, K. E., Schlawin, F. & Mukamel, S. Stimulated Raman spectroscopy with entangled light: enhanced resolution and pathway selection. J. Phys. Chem. Lett. 5, 2843–2849 (2014).

Coherent Corp. is a global leader in materials, networking, and lasers for the industrial, communications, electronics, and instrumentation markets.

Rohringer, N. X-ray Raman scattering: a building block for nonlinear spectroscopy. Phil. Trans. R. Soc. 377, 20170471 (2019).

Lockard, J. V., Butler Ricks, A., Co, D. T. & Wasielewski, M. R. Interrogating the intramolecular charge-transfer state of a julolidine−anthracene donor−acceptor molecule with femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 1, 215–218 (2010).

Agrawal, G. P., Baldeck, P. L. & Alfano, R. R. Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers. Phys. Rev. A 40, 5063–5072 (1989).

Shim, S., Stuart, C. M. & Mathies, R. A. Resonance Raman cross‐sections and vibronic analysis of rhodamine 6G from broadband stimulated Raman spectroscopy. ChemPhysChem 9, 697–699 (2008).

McCamant, D. W., Kukura, P., Yoon, S. & Mathies, R. A. Femtosecond broadband stimulated Raman spectroscopy: apparatus and methods. Rev. Sci. Instrum. 75, 4971–4980 (2004). This article presents a pioneering description of a basic FSRS setup.

Czerwinski, L., Nixdorf, J., Di Florio, G. & Gilch, P. Broadband stimulated Raman microscopy with 01 ms pixel acquisition time. Opt. Lett. 41, 3021–3024 (2016).

Lee, J., Challa, J. R. & McCamant, D. W. Ultraviolet light makes dGMP floppy: femtosecond stimulated Raman spectroscopy of 2′-deoxyguanosine 5′-monophosphate. J. Phys. Chem. B 121, 4722–4732 (2017).

Lynch, P. G., Das, A., Alam, S., Rich, C. C. & Frontiera, R. R. Mastering femtosecond stimulated Raman spectroscopy: a practical guide. ACS Phys. Chem. Au 4, 1–18 (2024).

2022912 — The spreading and bending of sound and ocean waves are two examples of diffraction, which is the bending of a wave around the edges of an opening or an ...

Creelman, M., Kumauchi, M., Hoff, W. D. & Mathies, R. A. Chromophore dynamics in the PYP photocycle from femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 118, 659–667 (2014).

Sinjab, F., Liao, Z. & Notingher, I. Applications of spatial light modulators in Raman spectroscopy. Appl. Spectrosc. 73, 727–746 (2019).

Present address: Physical Measurement Laboratory, National Institutes of Standards and Technology, Gaithersburg, MD, USA

Monacelli, L. et al. Manipulating impulsive stimulated Raman spectroscopy with a chirped probe pulse. J. Phys. Chem. Lett. 8, 966–974 (2017).

McCamant, D. W. Re-evaluation of rhodopsin’s relaxation kinetics determined from femtosecond stimulated Raman lineshapes. J. Phys. Chem. B 115, 9299–9305 (2011).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The energy difference with respect to the laser energy expressed in wavenumbers, evaluated as \(\Delta \widetilde{{\rm{\nu }}}\) (in units of cm–1) = 107 × (\({\lambda }_{{\rm{L}}}^{-1}\) – λ−1) (where wavelength is in units of nm).

Wahab, M. F. & O’Haver, T. C. Wavelet transforms in separation science for denoising and peak overlap detection. J. Sep. Sci. 43, 1998–2010 (2020).

Shenje, L., Qu, Y., Popik, V. & Ullrich, S. Femtosecond photodecarbonylation of photo-ODIBO studied by stimulated Raman spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 23, 25637–25648 (2021).

Stiles, P. L., Dieringer, J. A., Shah, N. C. & Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

Fingerhut, B. P., Dorfman, K. E. & Mukamel, S. Probing the conical intersection dynamics of the RNA base uracil by UV-pump stimulated-Raman-probe signals; ab initio simulations. J. Chem. Theory Comput. 10, 1172–1188 (2014).

Pontecorvo, E., Ferrante, C., Elles, C. G. & Scopigno, T. Spectrally tailored narrowband pulses for femtosecond stimulated Raman spectroscopy in the range 330–750 nm. Opt. Express 21, 6866–6872 (2013).

Dorfman, K. E., Fingerhut, B. P. & Mukamel, S. Time-resolved broadband Raman spectroscopies: a unified six-wave-mixing representation. J. Chem. Phys. 139, 124113 (2013).

Young, R. M. et al. Ultrafast conformational dynamics of electron transfer in ExBox4+⊂perylene. J. Phys. Chem. A 117, 12438–12448 (2013).

Hontani, Y. et al. Molecular origin of photoprotection in cyanobacteria probed by watermarked femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 9, 1788–1792 (2018).

Batignani, G., Mai, E., Fumero, G., Mukamel, S. & Scopigno, T. Absolute excited state molecular geometries revealed by resonance Raman signals. Nat. Commun. 13, 7770 (2022).

Lessing, H. E. & Von Jena, A. Separation of rotational diffusion and level kinetics in transient absorption spectroscopy. Chem. Phys. Lett. 42, 213–217 (1976).

First demonstrated in 1994, femtosecond stimulated Raman scattering (FSRS) has gained popularity since the early 2000s as an ultrafast pump–probe vibrational spectroscopy technique with the potential to circumvent the time and energy limitations imposed by the Heisenberg uncertainty principle. This Primer explores whether, why, when and how the temporal precision and frequency resolution of traditional time-resolved spontaneous Raman spectroscopy can be surpassed by its coherent counterpart (FSRS), while still adhering to the uncertainty principle. We delve into the fundamental concepts behind FSRS and its most common experimental implementations, focusing on instrumentation details, measurement techniques, data analysis and modelling. This includes discussions on synthesizing the Raman pump beam, artificial intelligence (AI)-assisted baseline removal methods and analytical expressions for reproducing experimental data and extracting key parameters such as relaxation times and out-of-equilibrium temperature profiles. Recent applications of FSRS from physics, chemistry and biology are showcased, demonstrating how this approach has facilitated cross-disciplinary studies. We also address the technical and conceptual limitations of FSRS to aid in designing optimal experiments based on specific goals. Finally, we explore future directions, including multidimensional extensions to address vibrational couplings and the use of quantum light to untangle temporal and spectral resolution.

Liebel, M., Schnedermann, C., Wende, T. & Kukura, P. Principles and applications of broadband impulsive vibrational spectroscopy. J. Phys. Chem. A 119, 9506–9517 (2015).

Roy, P., Browne, W. R., Feringa, B. L. & Meech, S. R. Ultrafast motion in a third generation photomolecular motor. Nat. Commun. 14, 1253 (2023).

Valensise, C. M. et al. Removing non-resonant background from CARS spectra via deep learning. APL Photon. 5, 061305 (2020).

Molesky, B. P., Guo, Z., Cheshire, T. P. & Moran, A. M. Perspective: two-dimensional resonance Raman spectroscopy. J. Chem. Phys. 145, 180901 (2016).

Batignani, G., Ferrante, C. & Scopigno, T. Accessing excited state molecular vibrations by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 11, 7805–7813 (2020).

Hoffman, D. P., Valley, D., Ellis, S. R., Creelman, M. & Mathies, R. A. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy. Opt. Express 21, 21685 (2013).

Lee, S., Jen, M., Jang, T., Lee, G. & Pang, Y. Twisted intramolecular charge transfer of nitroaromatic push–pull chromophores. Sci. Rep. 12, 6557 (2022).

Batignani, G. et al. Visualizing excited-state dynamics of a diaryl thiophene: femtosecond stimulated Raman scattering as a probe of conjugated molecules. J. Phys. Chem. Lett. 7, 2981–2988 (2016).

Kruglik, S. G. et al. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy. Proc. Natl Acad. Sci. USA 104, 7408–7413 (2007).

Hontani, Y. et al. Spectroscopic and computational observation of glutamine tautomerization in the blue light sensing using flavin domain photoreaction. J. Am. Chem. Soc. 145, 1040–1052 (2023).

Liu, W., Han, F., Smith, C. & Fang, C. Ultrafast conformational dynamics of pyranine during excited state proton transfer in aqueous solution revealed by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 116, 10535–10550 (2012).

Tahara, S., Kuramochi, H., Takeuchi, S. & Tahara, T. Protein dynamics preceding photoisomerization of the retinal chromophore in bacteriorhodopsin revealed by deep-UV femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 10, 5422–5427 (2019).

Amplification of a desired, weak, optical signal (ES) by its mixing with a strong field (EL), leading to the measured intensity \(I={{\rm{| }}{E}_{{\rm{L}}}{\rm{| }}}^{2}+{{\rm{| }}{E}_{{\rm{S}}}{\rm{| }}}^{2}+{E}_{{\rm{L}}}{E}_{{\rm{S}}}^{* }+{E}_{{\rm{S}}}{E}_{{\rm{L}}}^{* }\).

Mukamel, S. Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem. 51, 691–729 (2000).

Kuramochi, H., Takeuchi, S. & Tahara, T. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: apparatus and applications. Rev. Sci. Instrum. 87, 43107 (2016).

Roy, P., Al-Kahtani, F., Cammidge, A. N. & Meech, S. R. Solvent tuning excited state structural dynamics in a novel bianthryl. J. Phys. Chem. Lett. 14, 253–259 (2023).

Kumar, P. et al. Excited-state proton transfer dynamics in LSSmOrange studied by time-resolved impulsive stimulated Raman spectroscopy. J. Phys. Chem. Lett. 12, 7466–7473 (2021).

Shim, S., Dasgupta, J. & Mathies, R. A. Femtosecond time-resolved stimulated Raman reveals the birth of bacteriorhodopsin’s J and K intermediates. J. Am. Chem. Soc. 131, 7592–7597 (2009).

Ferrante, C. et al. Ultrafast dynamics and vibrational relaxation in six-coordinate heme proteins revealed by femtosecond stimulated Raman spectroscopy. J. Am. Chem. Soc. 142, 2285–2292 (2020).

Roy, P. et al. Ultrafast bridge planarization in donor-π-acceptor copolymers drives intramolecular charge transfer. Nat. Commun. 8, 1716 (2017).

Cameralensmountidentification

Dasgupta, J., Frontiera, R. R., Taylor, K. C., Lagarias, J. C. & Mathies, R. A. Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. Proc. Natl Acad. Sci. USA 106, 1784–1789 (2009).

Marx, C. A., Harbola, U. & Mukamel, S. Nonlinear optical spectroscopy of single, few, and many molecules: nonequilibrium Green’s function QED approach. Phys. Rev. A 77, 022110 (2008).

Batignani, G. et al. Excited-state energy surfaces in molecules revealed by impulsive stimulated Raman excitation profiles. J. Phys. Chem. Lett. 12, 9239–9247 (2021).

Batignani, G. et al. Genuine dynamics vs cross phase modulation artifacts in femtosecond stimulated Raman spectroscopy. ACS Photon. 6, 492–500 (2019).

Fumero, G., Batignani, G., Dorfman, K. E., Mukamel, S. & Scopigno, T. On the resolution limit of femtosecond stimulated Raman spectroscopy: modelling fifth-order signals with overlapping pulses. ChemPhysChem 16, 3438–3443 (2015).

Yoshizawa, M. & Kurosawa, M. Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering. Phys. Rev. A 61, 013808 (1999).

CA-LHE25, C-Mount-Objektiv mit sehr hoher Auflösung, Modellreihe CA-L, KEYENCE, Belgien.

Oscar, B. G., Chen, C., Liu, W., Zhu, L. & Fang, C. Dynamic Raman line shapes on an evolving excited-state landscape: insights from tunable femtosecond stimulated Raman spectroscopy. J. Phys. Chem. A 121, 5428–5441 (2017).

Tanaka, S. & Mukamel, S. Coherent X-ray Raman spectroscopy: a nonlinear local probe for electronic excitations. Phys. Rev. Lett. 89, 043001 (2002).

Solaris, J., Krueger, T. D., Chen, C. & Fang, C. Photogrammetry of ultrafast excited-state intramolecular proton transfer pathways in the fungal pigment draconin red. Molecules 28, 3506 (2023).

Tang, L. et al. Unraveling ultrafast photoinduced proton transfer dynamics in a fluorescent protein biosensor for Ca2+ imaging. Chem. A Eur. J. 21, 6481–6490 (2015).

Laimgruber, S., Schachenmayr, H., Schmidt, B., Zinth, W. & Gilch, P. A femtosecond stimulated Raman spectrograph for the near ultraviolet. Appl. Phys. B 85, 557–564 (2006). To our knowledge, this article is the first demonstration of FSRS with a fixed-wavelength ultraviolet Raman pump.

Tauber, M. J., Mathies, R. A., Chen, X. & Bradforth, S. E. Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy. Rev. Sci. Instrum. 74, 4958–4960 (2003).

McCamant, D. W., Kukura, P. & Mathies, R. A. Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin. J. Phys. Chem. B 109, 10449–10457 (2005).

Takaya, T. & Iwata, K. Relaxation mechanism of β-carotene from S2 (1Bu+) state to S1 (2Ag–) state: femtosecond time-resolved near-IR absorption and stimulated resonance Raman studies in 900–1550 nm region. J. Phys. Chem. A 118, 4071–4078 (2014).

Zhao, Z., Pu, R., Wang, Z., Jiang, J. & Liu, W. Identification of ultraviolet photoinduced presolvated electrons in water as the reducing agent in the photoreduction of graphene oxide. J. Phys. Chem. C 127, 3516–3522 (2022).

Kuramochi, H., Takeuchi, S., Kamikubo, H., Kataoka, M. & Tahara, T. Fifth-order time-domain Raman spectroscopy of photoactive yellow protein for visualizing vibrational coupling in its excited state. Sci. Adv. 5, eaau4490 (2023).

Sandoval, J. S. & McCamant, D. W. The best models of Bodipy’s electronic excited state: comparing predictions from various DFT functionals with measurements from femtosecond stimulated Raman spectroscopy. J. Phys. Chem. A 127, 8238–8251 (2023).

Robben, K. C. & Cheatum, C. M. Edge-pixel referencing suppresses correlated baseline noise in heterodyned spectroscopies. J. Chem. Phys. 152, 094201 (2020).

Jen, M., Lee, S., Lee, G., Lee, D. & Pang, Y. Intramolecular charge transfer of curcumin and solvation dynamics of DMSO probed by time-resolved Raman spectroscopy. Int. J. Mol. Sci. 23, 1727 (2022).

A signal in which various frequencies arrive at different time delays. In optical pulses, chirp commonly stems from the chromatic dispersion caused by transmitting optics, leading to red-shifted spectral components arriving earlier (positive chirp) or later (negative chirp) than the blue-shifted ones.

Pižl, M. et al. Time-resolved femtosecond stimulated Raman spectra and DFT anharmonic vibrational analysis of an electronically excited rhenium photosensitizer. J. Phys. Chem. A 124, 1253–1265 (2020).

Pu, R. et al. Investigation of ultrafast configurational photoisomerization of bilirubin using femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 14, 809–816 (2023).

Polli, D., Brida, D., Mukamel, S., Lanzani, G. & Cerullo, G. Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses. Phys. Rev. A 82, 053809 (2010).

Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627 (1964).

Gebrekidan, M. T., Knipfer, C. & Braeuer, A. S. Refinement of spectra using a deep neural network: fully automated removal of noise and background. J. Raman Spectrosc. 52, 723–736 (2021).

Kukura, P., McCamant, D. W., Davis, P. H. & Mathies, R. A. Vibrational structure of the S2 (1Bu) excited state of diphenyloctatetraene observed by femtosecond stimulated Raman spectroscopy. Chem. Phys. Lett. 382, 81–86 (2003).

Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

Dantus, M. & Lozovoy, V. V. Experimental coherent laser control of physicochemical processes. Chem. Rev. 104, 1813–1860 (2004).

Kloz, M., Weißenborn, J., Polívka, T., Frank, H. A. & Kennis, J. T. M. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S* state. Phys. Chem. Chem. Phys. 18, 14619–14628 (2016).

Kuramochi, H., Takeuchi, S. & Tahara, T. Ultrafast structural evolution of photoactive yellow protein chromophore revealed by ultraviolet resonance femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 3, 2025–2029 (2012).

Pastorczak, M., Nejbauer, M. & Radzewicz, C. Femtosecond infrared pump-stimulated Raman probe spectroscopy: the first application of the method to studies of vibrational relaxation pathways in the liquid HDO/D2O system. Phys. Chem. Chem. Phys. 21, 16895–16904 (2019). This article describes the use of FSRS with an infrared actinic pump.

Frostig, H., Katz, O., Natan, A. & Silberberg, Y. Single-pulse stimulated Raman scattering spectroscopy. Opt. Lett. 36, 1248 (2011).

Ashner, M. N. & Tisdale, W. A. High repetition-rate femtosecond stimulated Raman spectroscopy with fast acquisition. Opt. Express 26, 18331 (2018).

Bell, I. M., Clark, R. J. H. & Gibbs, P. J. Raman Spectroscopic Library of Natural and Synthetic Pigments. Christopher Ingold Laboratories/University College London https://www.chem.ucl.ac.uk/resources/raman/ (1998).

May 14, 2015 — The angular field of view (often called FOV) is a measure of the angular size for an image produced by a camera. Different cameras have ...

Fang, C. & Tang, L. Mapping structural dynamics of proteins with femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 71, 239–265 (2020).

Jen, M., Lee, S., Jeon, K., Hussain, S. & Pang, Y. Ultrafast intramolecular proton transfer of alizarin investigated by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 121, 4129–4136 (2017).

Abdolghader, P. et al. Unsupervised hyperspectral stimulated Raman microscopy image enhancement: denoising and segmentation via one-shot deep learning. Opt. Express 29, 34205 (2021).

Provencher, F. et al. Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions. Nat. Commun. 5, 4288 (2014).

Dec 19, 2017 — Recently, Sony unveiled IMX335, a total 5.14 megapixel back-illuminated CMOS image sensor which features exclusive digital overlap high ...

Mukamel, S. & Biggs, J. D. Communication: comment on the effective temporal and spectral resolution of impulsive stimulated Raman signals. J. Chem. Phys. 134, 161101 (2011). Key discussion of FSRS resolution and the Heisenberg principle.

Use a soft flame lighter or match like others have said. First do a "charring light". Take some gentle puffs and watch the tamped tobacco "fluff ...

A nonlinear optical effect that occurs when the refractive index of a material changes, typically in a quadratic manner, in response to an applied electric field. Such a modification can affect the propagation of pulses and their spectral profiles.

Bera, K., Kwang, S. Y., Cassabaum, A. A., Rich, C. C. & Frontiera, R. R. Facile background discrimination in femtosecond stimulated Raman spectroscopy using a dual-frequency Raman pump technique. J. Phys. Chem. A 123, 7932–7939 (2019).

Zhang, W. et al. Direct tracking excited-state intramolecular charge redistribution of acceptor–donor–acceptor molecule by means of femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 125, 4456–4464 (2021).

Batignani, G. et al. Probing ultrafast photo-induced dynamics of the exchange energy in a Heisenberg antiferromagnet. Nat. Photon. 9, 506–510 (2015). This article presents the measurement of sub-100-fs dynamics in a solid-state sample with high-resolution FSRS.

Burns, K. H., Quincy, T. J. & Elles, C. G. Excited-state resonance Raman spectroscopy probes the sequential two-photon excitation mechanism of a photochromic molecular switch. J. Chem. Phys. 157, 234302 (2022).

... 5/32", 1.5 mm, 2 mm,. 2.5 mm, 3 mm, 4 mm, 5 mm. 4-7/16" (112.7 mm) 1-7/16" to 2-17/64" (36.5 to 57.6 mm) Blue 0.30 lb (0.14 kg). 70574. Grip-It® Nine Key Hex ...

Silberberg, Y. Quantum coherent control for nonlinear spectroscopy and microscopy. Annu. Rev. Phys. Chem. 60, 277–292 (2009).