Spectralonamazon

Ensuring safety in environments with hazardous gases or dusts is crucial. Proper approvals and equipment certifications are required to mitigate…

Laser gas detectors allow for the detection of methane gas from a safe distance without the need for a worker to enter certain hazardous areas. Utilising infrared laser technology, methane leaks can be efficiently confirmed through the use of pointing a laser beam towards the suspected leak, or along the survey line. This revolutionary technology removes the need to access elevated places, under floor, hazardous areas or other hard to reach environments. It is also ideal for surveying large open spaces e.g., landfills or studying agricultural emissions.

Spectralonfor sale

Laser Gas Detection provide a solution to various gas detection challenges within emission monitoring and process control. Laser gas detectors use a near identical infrared technology to that seen on our other products, but where the transmitter and receiver are separated by a distance. When methane passes between the two, the ‘beam is broken’ and the receiver will let you know the concentration of gas.

Spectralonpanel

Crowcon will be continuing their participation in Hydrogen Industry Leaders later this month, when we will be the headline sponsor…

JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.

Following manufacturer instructions is essential for detector units. The bump test ensures the unit alarms correctly and displays accurate gas…

SpectralonWhite paintprice

Image

Leak detection of common gases usually detects flammable or explosive gas. This means that traditional (i.e., catalytic) leak detection methods are inadequate to successfully detect at a distance. This means that all gas resources or transmission lines must be observed in terms of a gas leakage.

Laser technology enables gas leaks to be located, by pointing the laser beam towards the suspected leak, or along a survey line. Being very intuitive and easy to use, it is practically ‘point and shoot’ with a 2-button operation and touch display. The laser beam pointed towards areas such as gas piping, the ground, joins etc, is reflected from the target. The device receives the reflected beam and measures the absorptivity of the beam, which is then calculated into methane column density (ppm-m) and displayed clearly on the display.

To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.

Spectralonmaterial

Spectralonpaint

Gas detector placement follows general guidelines rather than specific standards. Proper location and sensor choice are crucial for effective detection…

Laser-based gas sensor technology is an effective tool for detecting and quantifying methane emissions. Laser sensors are sharp with a quick response that can detect the relevant gas.

The LaserMethane Smart is a compact, portable methane gas detector, the latest laser methane device, replacing the obsolete LaserMethane mini. LaserMethane Smart can detect methane leaks at a distance up to 30m, enabling operators to quickly survey multiple leak risks, and safely, without having to enter a hazardous area.

The device is made even easier to use with its integrated camera, so operators can pin-point exactly where the emissions are coming from. A screen recording of the image can be captured, recording the gas concentration, alarm set point and zoom information for further analysis or reporting later.

Bluetooth devices can be paired to a mobile phone so the information can be transferred to an online portal for total data integrity and reporting, as well as capturing location so emissions can be traced to specific locations. This makes it even easier to ensure leaks are traced and any emission preventing actions can be recorded and used to prove their success against the previous emission readings at the same location.