Field of View - field of view of lenses
Benson RC, Meyer RA, Zaruba ME, McKhann GM. 1979. Cellular autofluorescence: is it due to flavins? J Histochem Cytochem 27(1):44–48.
Andresen M, Schmitz-Salue R, Jakobs S. 2004. Short tetracysteine tags to β-tubulin demonstrate the significance of small labels for live cell imaging. Mol Biol Cell 15:5616–5622.
Triantafilou K, Triantafilou M, Wilson KM. 2000. Phycobili-protein–fab conjugates as probes for single particle fluorescence imaging. Cytometry 41:226–234.
What are the benefits of custom magnifying glasses? Custom magnifying glasses make reading easier and more convenient. Your employees will make fewer mistakes. Your customers will love the ease of reviewing essential details. Eye doctors and senior centers can use branded reading glasses to build relationships and help customers in their daily lives.
Fluorophoresexamples
Kung CE, Reed JK. 1986. Microviscosity measurements of phospho-lipid bilayers using fluorescent dyes that undergo torsional relaxation. Biochemistry 25:6114–6121. See also Biochemistry (1989) 28:6678–6686.
With a wallet magnifying glass, your audience can take your logo on the go. This convenient promotional magnifier fits in the card slot of a wallet, making it easy to pull out when it's time to review the bill at a restaurant or before paying for a big ticket item. Buy these magnifying glasses in bulk for giveaways.
Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY. 1995. Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455.
Fischer AJ, Lagarias JC. 2004. Harnessing phytochrome’s glowing potential. Proc Natl Acad Sci USA (Early Ed.) 101:17334–17339.
Sklar LA, Hudson BS, Petersen M, Diamond J. 1977. Conjugated polyene fatty acids on fluorescent probes: Spectroscopic characterization. Biochemistry 16(5):813–818.
Rahavendran SV, Karnes HT. 1996. An oxazine reagent for derivati-zation of carboxylic acid analytes suitable for liquid chromatograph-ic detection using visible diode laser-induced fluorescence. J Pharmacol Biomed Anal 15:83–98.
Clarke RJ, Kane DJ. 1997. Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects. Biochim Biophys Acta 1323:223–239.
Kinnunen PKJ, Koiv A, Mustonen P. 1993. Pyrene-labeled lipids as fluorescent probes in studies on biomembranes and membrane models. In Fluorescence spectroscopy: new methods and applications, pp. 159–171. Ed OS Wolfbeis. Springer-Verlag, New York.
Madhuri S, Vengadesan N, Aruna P, Koteeswaran D, Venkatesan P, Ganesan S. 2003. Native fluorescence spectroscopy of blood plasma in the characterization of oral malignancy. Photochem Photobiol 78(2):197–204.
Mizeret J. 1998. Cancer detection by endoscopic frequency-domain fluorescence lifetime imaging. Thesis presented at École Polytechnique Federale de Lausanne, 177 pp.
Nakanishi J, Nakajima T, Sato M, Ozawa T, Tohda K, Umezawa Y. 2001. Imaging of conformational changes of proteins with a new environment-sensitive fluorescent probe designed for site-specific labeling of recombinant proteins in live cells. Anal Chem 73:2920–2928.
Szmacinski H, Lakowicz JR. 1994. Lifetime-based sensing. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing, pp. 295–334. Ed JR Lakowicz. Plenum Press, New York.
Consider a customized magnifying glass with an included stand for hands-free use. Your customers will love the ability to stand their magnifying glasses up on the desk, freeing their hands up to shift through documents, fix small parts of a pen, or even their glasses.
Fluorophoreslist
Schroeder F, Barenholz Y, Gratton E, Thompson TE. 1987. A fluorescence study of dehydroergosterol in phosphatidylcholine bilayer vesicles. Biochemistry 26:2441–2448.
With a custom ruler or bookmark that doubles as a magnifying glass, you get two tools in one. These magnifying glasses feature either a 12-inch ruler or bookmark and a built-in magnifying glass.
Zimmer M. 2002. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev 102:759–781.
Zhou M, Upson RH, Diwu Z, Haugland RP. 1996. A fluorogenic substrate for β-glucuronidase: applications in fluorometric, polyacry-lamide gel and histochemical assays. J Biochem Biophys Methods 33:197–205.
Is GFP a fluorophore
Douglass PM, Salins LLE, Dikici E, Daunert S. 2002. Class-selective drug detection: fluorescently labeled calmodulin as the biorecogni-tion element for phenothiazines and tricyclic antidepressants. Bioconjugate Chem 13:1186–1192.
Tjioe I, Legerton T, Wegstein J, Herzenberg LA, Roederer M. 2001. Phycoerythrin-allophycocyanin: a resonance energy transfer fluo-rochrome for immunofluorescence. Cytometry 44:24–29.
Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA. 1999. Fluorescent proteins from non-bioluminescent Anthozoa species. Nature Biotechnol 17:969–973.
Lippincott-Schwartz J, Patterson GH. 2003. Development and use of fluorescent protein markers in living cells. Science 300:87–91.
Promotional magnifying glasses and readers are always helpful to have on hand. You can take advantage of wholesale magnifying glasses when you buy in large quantities. They’re a cost-effective item that makes sense to stock up on.
Fischer RT, Cowlen MS, Dempsey ME, Schroeder F. 1985. Fluorescence of Δ5,7,9(11),22-ergostatetraen-3β-ol in micelles, sterol carrier protein complexes, and plasma membranes. Biochemistry 24:3322–3331.
Daniel E, Weber G. 1966. Cooperative effects in binding by bovine serum albumin, I: the binding of 1-anilino-8-naphthalenesulfonate. Fluorimetric titrations. Coop Effects Binding Albumin 5:1893–1900.
Hwang K-J, O’Neil JP, Katzenellenbogen JA. 1992. 5,6,11,12-Tetrahydrochrysenes: synthesis of rigid stilbene systems designed to be fluorescent ligands for the estrogen receptor. J Org Chem 57:1262–1271.
Hull RV, Conger PS, Hoobler RJ. 2001. Conformation of NADH studied by fluorescence excitation transfer spectroscopy. Biophys Chem 90:9–16.
Baird GS, Zacharias DA, Tsien RY. 2000. Biochemistry, mutagene-sis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97(22):11984–11989.
Arden-Jacob J, Frantzeskos J, Kemnitzer NU, Zilles A, Drexhage KH. 2001. New fluorescent markers for the red region. Spectrochim Acta A 57:2271–2283.
Longworth JW. 1971. Luminescence of polypeptides and proteins. In Excited states of proteins and nucleic acids, pp. 319–484. Ed RF Steiner, I Welnryb, Plenum, New York.
Kawai M, Lee MJ, Evans KO, Nordlund TM. 2001. Temperature and base sequence dependence of 2-aminopurine fluorescence bands in single- and double-stranded oligodeoxynucleotides. J Fluoresc 11(1):23–32.
From reading glasses to rulers and even eyeglass repair kits, we carry a wide variety of products that can bring the focus to your brand.
Lamture JB, Wensel TG. 1995. Intensely luminescent immunoreac-tive conjugates of proteins and dipicolinate-based polymeric Tb(III) chelates. Bioconjugate Chem 6:88–92.
(2006). Fluorophores. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46312-4_3
Holzwarth AR, Wendler J, Suter GW. 1987. Studies on chromophore coupling in isolated phycobiliproteins. Biophys J 51:1–12.
Brochon J-C, Wahl P, Monneuse-Doublet M-O, Olomucki A. 1977. Pulse fluorimetry study of octopine dehydrogenase-reduced nicoti-namide adenine dinucleotide complexes. Biochemistry 16(21):4594–4599.
Geoghegan KF. 1996. Improved method for converting an unmodified peptide to an energy-transfer substrate for a proteinase. Bioconjugate Chem 7(3):385–391.
Rettig W, Lapouyade R. 1994. Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic pho-toreactions. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing, pp. 109–149. Ed JR Lakowicz. Plenum Press, New York.
Oswald B, Gruber M, Bohmer M, Lehmann F, Probst M, Wolfbeis OS. 2001. Novel diode laser-compatible fluorophores and their application to single molecule detection, protein labeling and fluorescence resonance energy transfer immunoassay. Photochem Photobiol 74(2):237–245.
Karasawa S, Araki T, Yamamoto-Hino M, Miyawaki A. 2003. A green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. J Biol Chem 278(36):34167–34171.
Prendergast FG, Meyer M, Carlson GL, Iida S, Potter JD. 1983. Synthesis, spectral properties, and use of 6-acryloyl-2-dimethy-laminonaphthalene (Acrylodan). J Biol Chem 258(12):7541–7544.
Mataga N, Chosrowjan H, Taniguchi S, Tanaka F, Kido N, Kitamura M. 2002. Femtosecond fluorescence dynamcis of flavoproteins: comparative studies on flavodoxin, its site-directed mutants, and riboflavin binding protein regarding ultrafast electron transfer in protein nanospaces. J Phys Chem B 106:8917–8920.
Hammer RP, Owens CV, Hwang SH, Sayes CM, Soper SA. 2002. Asymmetrical, water-soluble phthalocyanine dyes for covalent labeling of oligonucleotides. Bioconjugate Chem 13:1244–1252.
Biologicalfluorophores
Oi VT, Glazer AN, Stryer L. 1982. Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J Cell Biol 93:981–986.
Eriksson S, Kim SK, Kubista M, Norden B. 1993. Binding of 4′,6-diamidino-2-phenylindole (DAPI) to AT regions of DNA: evidence for an allosteric conformational change. Biochemistry 32:2987–2998.
Fluorescence probes represent the most important area of fluorescence spectroscopy. The wavelength and time resolution required of the instruments is determined by the spectral properties of the fluorophores. Furthermore, the information available from the experiments is determined by the properties of the probes. Only probes with non-zero anisotropies can be used to measure rotational diffusion, and the lifetime of the fluorophore must be comparable to the timescale of interest in the experiment. Only probes that are sensitive to pH can be used to measure pH. And only probes with reasonably long excitation and emission wavelengths can be used in tissues, which display autofluorescence at short excitation wavelengths.
Murphys JT, Lagarias JC. 1997. Purification and characterization of recombinant affinity peptide-tagged oat phytochrome A. Photochem Photobiol 65(4):750–758.
Vaccari S, Benci S, Peracchi A, Mozzarelli A. 1997. Time-resolved fluorescence of pyridoxal 5′-phosphate-containing enzymes: trypto-phan synthetase and O-acetylserine sulfhydrylase. J Fluoresc 7(1):135S–137S.
Davenport L, Shen B, Joseph TW, Straher MP. 2001. A novel fluorescent coronenyl-phospholipid analogue for investigations of sub-microsecond lipid fluctuations. Chem Phys Lipids 109:145–156.
Prendergast FG, Haugland RP, Callahan PJ. 1981. 1-[4-(trimethy-lamino)phenyl]-6-phenylhexa-1,3,5 triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry 20:7333–7338.
Martin RB, Richardson FS. 1979. Lanthanides as probes for calcium in biological systems. Quart Rev Biophys 12(2):181–209.
Matayoshi ED, Wang GT, Krafft GA, Erickson J. 1990. Novel fluo-rogenic substrates for assaying retroviral proteases by resonance energy transfer. Science 247:954–957.
Kao JPY. 1994. Practical aspects of measuring [Ca2+] with fluorescent indicators. In Methods in Cell Biology, Vol. 40, pp. 155–181. Ed R Nuccitelli. Academic Press, New York.
Adir N, Lerner N. 2003. The crystal structure of a novel unmethylat-ed form of C-phycocyanin, a possible connector between cores and rods in phycobilisomes. J Biol Chem 278(28):25926–25932.
Churchich JE. 1976. Fluorescent probe studies of binding sites in proteins and enzymes. Mod Fluoresc Spectrosc 2:217–237.
Hawkins ME, Pfleiderer W, Mazumder A, Pommier YG, Balis FM. 1995. Incorporation of a fluorescent guanosine analog into oligonu-cleotides and its application to a real time assay for the HIV-1 integrase 3′-processing reaction. Nucleic Acids Res 23(15):2872–2880.
Geddes CD, Lakowicz JR, eds. 2005. Advanced concepts in fluorescence sensing: small molecule sensing. Top Fluoresc Spectrosc 9, forthcoming.
Mizuno H, Sawano A, Eli P, Hama H, Miyawaki A. 2001. Red fluorescent protein from discosoma as a fusion tag and a partner for fluorescence resonance energy transfer. Biochemistry 40:2502–2510.
Vaccari S, Benci S, Peracchi A, Mozzarelli A. 1996. Time-resolved fluorescence of tryptophan synthase. Biophys Chem 61:9–22.
Kwon O-S, Blazquez M, Churchich JE. 1994. Luminescence spec-troscopy of pyridoxic acid and pyridoxic acid bound to proteins. Eur J Biochem 219:807–812.
Let your patients and prospects see clearly with promotional reading glasses. We offer a handful of styles including soft frame reading glasses and folding reading glasses. You can have your logo printed on the reading glasses to remind customers you care and build better relationships.
Rahavendran SV, Karnes HT. 1996. Application of rhodamine 800 for reversed phase liquid chromatographic detection using visible diode laser induced fluorescence. Anal Chem 68:3763–3768.
Albani JR, Sillen A, Engelborghs Y, Gervais M. 1999. Dynamics of flavin in flavocytochrome b2: a fluorescence study. Photochem Photobiol 69(1):22–26.
Demas JN, DeGraff BA. 1992. Applications of highly luminescent transition metal complexes in polymer systems. Macromol Chem Macromol Symp 59:35–51.
Visser AJWG. 1984. Kinetics of stacking interactions in flavin adenine dinucleotide from time-resolved flavin fluorescence. Photochem Photobiol 40(6):703–706.
Make sure you can read the fine print at the office with custom magnifying glasses, branding reading glasses, and magnifier bookmarks. Magnify your brand awareness when you give these custom logo promotional items to your customers, employees, and prospects.
Wolfbeis OS. 1985. The fluorescence of organic natural products. In Molecular luminescence spectroscopy, Part 1, pp. 167–370. Ed SG Schulman. John Wiley & Sons, New York.
Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802–805.
Breton R, Housset D, Mazza C, Fontecilla-Camps JC. 1996. The structure of a complex of human 17-β-hydroxysteroid dehydroge-nase with estradiol and NADP+ identifies two principal targets for the design of inhibitors. Structure 4:905–915.
Sabbatini N, Guardigli M. 1993. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev 123:201–228.
Fradkov AF, Chen Y, Ding L, Barsova EV, Matz MV, Lukyanov SA. 2000. Novel fluorescent protein from discosoma coral and its mutants possesses a unique far-red fluorescence. FEBS Lett 479:127–130.
Churchich JE. 1986. Fluorescence properties of free and bound pyri-doxal phosphate and derivatives. Pyridoxal Phosphate: Chem Biochem Med Asp A, 1A:545–567.
Jean JM, Hall KB. 2001. 2-aminopurine fluorescence quenching and lifetimes: role of base stacking. Proc Natl Acad Sci USA 98(1):37–41.
Dragsten PR, Webb WW. 1978. Mechanism of the membrane potential sensitivity of the fluorescent membrane probe merocyanine 540. Biochemistry 17:5228–5240.
Johnson ID, Kang HC, Haugland RP. 1991. Fluorescent membrane probes incorporating dipyrrometheneboron difluoride fluorophores. Anal Biochem 198:228–237.
Leenders R, Kooijman M, van Hoek A, Veeger C, Visser AJWG. 1993. Flavin dynamics in reduced flavodoxins. Eur J Biochem 211:37–45.
DaCosta RS, Andersson H, Wilson BC. 2003. Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy. Photochem Photobiol 78(4):384–392.
Loos D, Cotlet M, De Schryver F, Habuchi S, Jofkens J. 2004. Single-molecule spectroscopy selectively probes donor and acceptor chromophore in the phycobiliprotein allophycocyanin. Biophys J 87:2598–2608.
Czarnik AW. 1994. Fluorescent chemosensors for cations, anions, and neutral analytes. In Topics in fluorescence spectroscopy, Vol. 4: probe design and chemical sensing, pp. 49–70. Ed JR Lakowicz. Plenum Press, New York.
Nordlund TM, Wu P, Anderson S, Nilsson L, Rigler R, Graslund A, McLaughlin LW, Gildea B. 1990. Structural dynamics of DNA sensed by fluorescence from chemically modified bases. SPIE Proc 1204:344–353.
Steiner RF, Kubota Y. 1983. Fluorescent dye-nucleic acid complexes. In Excited states of biopolymers. Ed RF Steiner. Plenum Press, New York.
Wang Q, Scheigetz J, Gilbert M, Snider J, Ramachandran C. 1999. Fluorescein monophosphates as fluorogenic substrates for protein tyrosine phosphatases. Biochim Biophys Acta 1431:14–23.
Great for reading in the dark, a custom magnifying glass with light is perfect for night owls. Universities can give students these items in a swag bag for late-night study sessions without keeping others up in their dorms.
Weber G, Farris FJ. 1979. Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)-naphthalene. Biochemistry 18:3075–3078.
Hale JE, Schroeder F. 1982. Asymmetric transbilayer distribution of sterol across plasma membranes determined by fluorescence quenching of dehydroergosterol. Eur J Biochem 122:649–661.
How dofluorophoreswork
Li L, Szmacinski H, Lakowicz JR. 1997. Long-lifetime lipid probe containing a luminescent metal-ligand complex. Biospectroscopy 3:155–159.
Sims PJ, Waggoner AS, Wang C-H, Hoffman JF. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13(16):3315–3336.
Bruno J, Horrocks WDeW, Zauhar RJ. 1992. Europium(III) luminescence and tyrosine to terbium(III) energy transfer studies of invertebrate (octopus) calmodulin. Biochemistry 31:7016–7026.
Wiedenmann J, Schenk A, Rocker C, Girod A, Spindler KD. 2002. A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (anthozoa, actinaria). Proc Natl Acad Sci USA 99(18):11646–11651.
Gross E, Bedlack RS, Loew LM. 1994. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J 67:208–216.
Lövgren T, Pettersson K. 1990. Time-resolved fluoroimmunoassay, advantages and limitations. In Luminescence immunoassay and molecular applications, pp. 233–253. Ed K Van Dyke, R Van Dyke. CRC Press, Boca Raton, FL.
Klonis N, Wang H, Quazi NH, Casey JL, Neumann GM, Hewish DR, Hughes AB, Deady LW, Tilley L. 2001. Characterization of a series of far red absorbing perylene diones: a new class of fluorescent probes for biological applications. J Fluoresc 11(1):1–11.
Bevis BJ, Glick BS. 2002. Rapidly maturing variants of the discosoma red fluorescent protein (DsRed). Nature Biol 20:83–87.
Davenport L, Targowski P. 1996. Submicrosecond phospholipid dynamics using a long lived fluorescence emission anisotropy probe. Biophys J 71:1837–1852.
Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, Steele GD, Chen LB. 1991. Intracellular heterogeneity in mito-chondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 88:3671–3675.
Fluorophoresin fluorescence microscopy
Slavik J. 1982. Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim Biophys Acta 694:1–25.
Haq I, Ladbury JE, Chowdhry BZ, Jenkins TC, Chaires JB. 1997. Specific binding of Hoechst 33258 to the d(CGCAAATTTGCG)2 duplex: calorimetric and spectroscopic studies. J Mol Biol 271:244–257.
Palmer GM, Keely PJ, Breslin TM, Ramanujam N. 2003. Autfluorescence spectroscopy of normal and malignant human breast cell lines. Photochem Photobiol 78(5):462–469.
Lin Y, Weissleder R, Tung CH. 2003. Synthesis and properties of sulfhydryl-reactive near-infrared cyanine fluorochromes for fluorescence imaging. Mol Imaging 2(2):87–92.
Xiao G-S, Zhou J-M. 1996. Conformational changes at the active site of bovine pancreatic RNase A at low concentrations of guanidine hydrochloride probed by pyridoxal 5′-phosphate. Biochim Biophys Acta 1294:1–7.
Wagnieres GA, Star WM, Wilson BC. 1998. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68(5):603–632.
Balzani V, Ballardini R. 1990. New trends in the design of luminescent metal complexes. Photochem Photobiol 52(2):409–416.
Li B, Lin S-X. 1996. Fluorescence-energy transfer in human estradi-ol 17β-dehydrogenase–NADH complex and studies on the coenzyme binding. Eur J Biochem 235:180–186.
Southwick PL, Ernst LA, Tauriello EW, Parker SR, Mujumdar RB, Mujumdar SW, Clever HA, Waggoner AS. 1990. Cyanine dye labeling reagents-carboxymethylindocyanine succinimidyl esters. Cytometry 11:418–430.
Trinquet E, Maurin F, Préaudat M, Mathis G. 2001. Allphycocyanin 1 as a near-infrared fluorescent tracer: isolation, characterization, chemical modification, and use in a homogeneous fluorescence resonance energy transfer system. Anal Biochem 296:232–244.
Velick SF. 1958. Fluorescence spectra and polarization of glyceralde-hyde-3-phosphate and lactic dehydrogenase coenzyme complexes. J Biol Chem 233:1455–1467.
Ehrig T, O’Kane DJ, Prendergast FG. 1995. Green fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett 367:163–166.
Billinton N, Knight AW. 2001. Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal Biochem 291:175–197.
Wu P, Li H, Nordlund TM, Rigler R. 1990. Multistate modeling of the time and temperature dependence of fluorescence from 2-aminopurine in a DNA decamer. SPIE Proc 204:262–269.
Gambetta GA, Lagarias JC. 2001. Genetic engineering of phy-tochrome biosynthesis in bacteria. Proc Natl Acad Sci USA 98(19):10566–10571.
Terpetschnig E, Szmacinski H, Lakowicz JR. 1997. Long lifetime metal—ligand complexes as probes in biophysics and clinical chemistry. Methods Enzymol 278:295–321.
Heim R, Tsien RY. 1996. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182.
Cacciatore TW, Brodfuehrer PD, Gonzalez JE, Jiang T, Adams SR, Tsien RY, Kristan Jr WB, Kleinfield D. 1999. Identification of neural circuits by imaging coherent electrical activity with FRET-based dyes. Neuron 23:449–459.
Telford WG, Moss MW, Morseman JP, Allnutt FCT. 2001. Cryptomonad algal phycobiliproteins as fluorochromes for extracellular and intracellular antigen detection by flow cytometry. Cytometry 44:16–23.
Loontiens FG, McLaughlin LW, Diekmann S, Clegg RM. 1991. Binding of Hoechst 33258 and 4′,6-diamidino-2-phenylindole to self-complementary decadeoxynucleotides with modified exocyclic base substitutents. Biochemistry 30:182–189.
Thousands of fluorescent probes are known, and it is not practical to describe them all. This chapter contains an overview of the various types of fluorophores, their spectral properties, and applications. Fluorophores can be broadly divided into two main classes—intrinsic and extrinsic. Intrinsic fluorophores are those that occur naturally. These include the aromatic amino acids, NADH, flavins, derivatives of pyridoxyl, and chlorophyll. Extrinsic fluorophores are added to the sample to provide fluorescence when none exists, or to change the spectral properties of the sample. Extrinsic fluorophores include dansyl, fluorescein, rho-damine, and numerous other substances.
Kao WY, Davis CE, Kim YI, Beach JM. 2001. Fluorescence emission spectral shift measurements of membrane potential in single cells. Biophys J 81:1163–1170.
Ignatova Z, Gierasch LM. 2004. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc Natl Acad Sci USA 101:523–528.
Li L, Murphy JT, Lagarias JC. 1995. Continuous fluorescence assay of phytochrome assembly in vitro. Biochemistry 34:7923–7930.
Gershkovich AA, Kholodovych VV. 1996. Fluorogenic substrates for proteases based on intramolecular fluorescence energy transfer (IFETS). J Biochem Biophys Methods 33:135–162.
Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao X, Fang Y, Tan W, Lukyanov SA. 2000. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275(34):25879–25882.
Gonzalez JE, Tsien RY. 1995. Voltage sensing by fluorescence resonance energy transfer in single cells. Biophys J 69:1272–1280.
Richardson FS. 1982. Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems. Chem Rev 82:541–552.
Flanagan JH, Romero SE, Legendre BL, Hammer RP, Soper A. 1997. Heavy-atom modified near-IR fluorescent dyes for DNA sequencing applications: synthesis and photophysical characterization. SPIE Proc 2980:328–337.
Griffin BA, Adams SR, Tsien RY. 1998. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272.
Lumture JB, Wensel TG. 1993. A novel reagent for labelling macro-molecules with intensity luminescent lanthanide complexes. Tetrahedron Lett 34(26):4141–4144.
Thompson RB. 1994. Red and near-infrared fluorometry. In Topics in fluorescence spectroscopy, Vol 4: Probe design and chemical sensing, pp. 151–152. Ed JR Lakowicz. Plenum Press, New York.
Parkinson JA, Barber J, Douglas KT, Rosamond J, Sharples D. 1990. Minor-groove recognition of the self-complementary duplex d(CGC-GAATTCGCG)2 by Hoechst 33258: a high-field NMR study. Biochemistry 29:10181–10190.
Klymchenko AS, Duportail G, Mély Y, Demchenko AP. 2003. Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes. Proc Natl Acad Sci USA 100(20):11219–11224.
Zhang J, Davidson RM, Wei M, Loew LM. 1998. Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons. Biophys J 74:48–53.
Shapovalov VL, Kotova EA, Rokitskaya TI, Antonenko YN. 1999. Effect of Gramicidin A on the dipole potential of phospholipid membranes. Biophys J 77:299–305.
Telford WG, Moss MW, Morseman JP, Allnutt FCT. 2001. Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry. J Immunol Methods 254:13–30.
Fluorophore structure
Rye HS, Yue S, Wemmer DE, Quesada MA, Haugland RP, Mathies RA, Glazer AN. 1992. Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res 20(11):2803–2812.
Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY. 2002. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076.
Jean JM, Hall KB. 2002. 2-aminopurine electronic structure and fluorescence properties in DNA. Biochemistry 41:13152–13161.
Yang M, Baranov E, Jiang P, Sun FX, Li XM, Li L, Hasegawa S, Bouvet M, Al-tuwaijri M, Chishima T, Shimada H, Moossa AR, Penman S, Hoffman RM. 2000. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97(3):1206–1211.
Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ. 1996. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395.
Nakanishi J, Maeda M, Umezawa Y. 2004. A new protein conformation indicator based on biarsenical fluorescein with an extended ben-zoic acid moiety. Anal Sci 20:273–278.
Buschmann V, Weston KD, Sauer M. 2003. Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconjugate Chem 14:195–204.
Huang S, Heikal AA, Webb WW. 2002. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825.
Chang PY, Jackson MB. 2003. Interpretation and optimization of absorbance and fluorescence signals from voltage-sensitive dyes. J Membr Biol 196:105–116.
Schools, bookstores, libraries, kindergartens, retirement homes, and eye doctors can all provide value to their audiences with company logo-printed magnifying glasses. Buy branded magnifying glasses in bulk to give out at reading events, tradeshows, and corporate events.
Graefe KA, Tang Z, Karnes HT. 2000. High-performance liquid chromatography with on-line post-column immunoreaction detection of digoxin and its metabolites based on fluorescence energy transfer in the far-red spectral region. J Chromatogr B 745:305–314.
Fluorochrome vs fluorophore
Enlarge your brand awareness with custom magnifying glasses. Show your employees and customers you care with a promotional item that helps them see clearer. They'll think of you whenever they pull out their handy magnifying glass.
Adachi M, Nagao Y. 2001. Design of near-infrared dyes based on A-conjugation system extension, 2: theoretical elucidation of framework extended derivatives of perylene chromophore. Chem Mater 13:662–669.
Loura LMS, Prieto M. 1997. Aggregation state of dehydroergosterol in water and in a model system of membranes. J Fluoresc 7(1):173S–175S.
Horrocks WDeW, Sudnick DR. 1981. Lanthanide ion luminescence probes of the structure of biological macromolecules. Acc Chem Res 14:384–392.
Poenie M, Chen C-S. 1993. New fluorescent probes for cell biology. In Optical microscopy, pp. 1–25. Ed B Herman, JJ Lemasters. Academic Press, New York.
Glazer AN, Peck K, Matheis RA. 1990. A stable double-stranded DNA ethidium homodimer complex: application to picogram fluorescence detection of DNA in agarose gels. Proc Natl Acad Sci USA 87:3851–3855.
Gafni A, Brand L. 1976. Fluorescence decay studies of reduced nicotinamide adenine dinucleotide in solution and bound to liver alcohol dehydrogenase. Biochemistry 15(15):3165–3171.
Bowen CM, Katzenellenbogen JA. 1997. Synthesis and spectroscop-ic characterization of two aza-tetrahydrochrysenes as potential fluorescent ligands for the estrogen receptor. J Org Chem 62:7650–7657.
Richards-Kortum R, Sevick-Muraca E. 1996. Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem 47:555–606.
Our customized magnifying glasses come in traditional styles, flat sheets, and even convenient magnifier cards that can all be customized with a company logo or promotional message.
Li M, Selvin PR. 1995. Luminescent polyaminocarboxylate chelates of terbium and europium: the effect of chelate structure. J Am Chem Soc 117:8132–8138.
Help your audience see clearly with promotional magnifiers, magnifying glasses, or logo reading glasses. A magnifying glass for reading can assist employees who spend hours reviewing contracts.
Valeur B. 1994. Principles of fluorescent probe design for ion recognition. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing, pp. 21–48. Ed JR Lakowicz. Plenum Press, New York.
Magnify your message and let them focus on your brand. Visit 4AllPromos today to create your custom-branded magnifying glass.
Illsley NP, Verkman AS. 1987. Membrane chloride transport measured using a chloride-sensitive fluorescent probe. Biochemistry 26:1215–1219.
Kwon MS, Koo BC, Choi BR, Lee HT, Kim YH, Ryu WS, Shim H, Kim JH, Kim NH, Kim T. 2004. Development of transgenic chickens expressing enhanced green fluorescent protein. Biochem Biophys Res Commun 320:442–448.
Niwa H, Inouye S, Hirano T, Matsuno T, Kojima S, Kubota M, Ohashi M, Tsuji FI. 1996. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci USA 93:13617–13622.
Diegelman S, Fiala A, Leibold C, Spall T, Buchner E. 2002. Transgenic flies expressing the fluorescence calcium sensor cameleon 2.1 under UAS control. Genesis 34:95–98.
Walkup GK, Imperiali B. 1996. Design and evaluation of a peptidyl fluorescent chemosensor for divalent zinc. J Am Chem Soc 118:3053–3054.
Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ, Telford WG, Yue S, Liu J, Cheung C-Y, Chang W, Hirsch JD, Beechem JM, Haugland RP, Haugland RP. 2003. Quantitative comparison of long-wavelength Alexa fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 51(12):1699–1712.
Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY. 2002. A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99(12):7877–7882.
Hemmila I. 1993. Progress in delayed fluorescence immunoassay. In Fluorescence spectroscopy, new methods and applications, pp. 259–266. Ed OS Wolfbeis. Springer-Verlag, New York.
Plásek J, Sigler K. 1996. Slow fluorescent indicators of membrane potential: a survey of different approaches to probe response analysis. J Photochem Photobiol B: Biol 33:101–124.