Deep Cleaning: The SweetVinyl SugarCube SC-1 Plus - sugarcube
Polarisationmeaning in Physics
This website uses cookies to deliver some of our products and services as well as for analytics and to provide you a more personalized experience. Click here to learn more. By continuing to use this site, you agree to our use of cookies. We've also updated our Privacy Notice. Click here to see what's new.
Was watching a nature documentary and it touched on some animals seeing polarized light vs ultraviolet light. What is polarized light, and how does it differ from UV light?
Polarizationof lightnotes PDF
Steven M. Beck, Joseph R. Buck, Walter F. Buell, Richard P. Dickinson, David A. Kozlowski, Nicholas J. Marechal, and Timothy J. Wright
The spatial resolution of a conventional imaging laser radar system is constrained by the diffraction limit of the telescope’s aperture. We investigate a technique known as synthetic-aperture imaging laser radar (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long-range, two-dimensional imaging with modest aperture diameters. We detail our laboratory-scale SAIL testbed, digital signal-processing techniques, and image results. In particular, we report what we believe to be the first optical synthetic-aperture image of a fixed, diffusely scattering target with a moving aperture. A number of fine-resolution, well-focused SAIL images are shown, including both retroreflecting and diffuse scattering targets, with a comparison of resolution between real-aperture imaging and synthetic-aperture imaging. A general digital signal-processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system.
Polarized and unpolarizedlight
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution. Contact your librarian or system administrator or Login to access Optica Member Subscription
What is polarizationofwaves in Physics
This website uses cookies to deliver some of our products and services as well as for analytics and to provide you a more personalized experience. Click here to learn more. By continuing to use this site, you agree to our use of cookies. We've also updated our Privacy Notice. Click here to see what's new.
The spatial resolution of a conventional imaging laser radar system is constrained by the diffraction limit of the telescope’s aperture. We investigate a technique known as synthetic-aperture imaging laser radar (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long-range, two-dimensional imaging with modest aperture diameters. We detail our laboratory-scale SAIL testbed, digital signal-processing techniques, and image results. In particular, we report what we believe to be the first optical synthetic-aperture image of a fixed, diffusely scattering target with a moving aperture. A number of fine-resolution, well-focused SAIL images are shown, including both retroreflecting and diffuse scattering targets, with a comparison of resolution between real-aperture imaging and synthetic-aperture imaging. A general digital signal-processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system.
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution. Contact your librarian or system administrator or Login to access Optica Member Subscription
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution. Contact your librarian or system administrator or Login to access Optica Member Subscription
Polarisation of lightin physics
Steven M. Beck, Joseph R. Buck, Walter F. Buell, Richard P. Dickinson, David A. Kozlowski, Nicholas J. Marechal, and Timothy J. Wright
Zhiwei Sun, Peipei Hou, Ya’nan Zhi, Jianfeng Sun, Yu Zhou, Qian Xu, Zhiyong Lu, and Liren Liu Appl. Opt. 53(9) 1846-1855 (2014)