CraftOptics Magnifying Eyeglasses - magnification eyewear
Gaussian beamq parameter
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution. Contact your librarian or system administrator or Login to access Optica Member Subscription
Gaussian beamcalculator
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution. Contact your librarian or system administrator or Login to access Optica Member Subscription
laguerre-gaussianbeam
Department of Physics, The City College of City University of New York, Convent Avenue and 138th Street, New York, New York 10031
We cannot complete your request due to a technical difficulty. You may return to the previous page or go to the homepage and explore other options. For immediate assistance please call us.
The propagation of a Gaussian beam in a homogeneous, isotropic, local, linear, and nonmagnetic dielectric medium is studied using the angular spectrum representation for the electric field. The electric field associated with the Gaussian beam inside the dielectric medium consists of the paraxial result and higher-order non-Gaussian correction terms. It is shown that the second-order correction term satisfies an equation consistent with the recent work of Lax, Louisell, and McKnight. Numerical results showing the corrections to the paraxial approximation are presented.
This website uses cookies to deliver some of our products and services as well as for analytics and to provide you a more personalized experience. Click here to learn more. By continuing to use this site, you agree to our use of cookies. We've also updated our Privacy Notice. Click here to see what's new.
Laguerre-Gaussian mode
Gaussian beam
The propagation of a Gaussian beam in a homogeneous, isotropic, local, linear, and nonmagnetic dielectric medium is studied using the angular spectrum representation for the electric field. The electric field associated with the Gaussian beam inside the dielectric medium consists of the paraxial result and higher-order non-Gaussian correction terms. It is shown that the second-order correction term satisfies an equation consistent with the recent work of Lax, Louisell, and McKnight. Numerical results showing the corrections to the paraxial approximation are presented.
This website uses cookies to deliver some of our products and services as well as for analytics and to provide you a more personalized experience. Click here to learn more. By continuing to use this site, you agree to our use of cookies. We've also updated our Privacy Notice. Click here to see what's new.
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution. Contact your librarian or system administrator or Login to access Optica Member Subscription
Carl G. Chen, Paul T. Konkola, Juan Ferrera, Ralf K. Heilmann, and Mark L. Schattenburg J. Opt. Soc. Am. A 19(2) 404-412 (2002)