Bei einer ausgedehnten Lichtquelle mit statistischer Phasenverteilung, d.h. zutreffend für LEDs, Glühbirnen und Gasentladungslampen, jedoch nicht für Laser, wird die räumliche Kohärenz durch die Ausdehnung und die Form der Lichtquelle bestimmt. Dabei geht es mehr um die Winkelausdehnung als um die tatsächliche Ausdehnung, so dass die räumliche Kohärenz daher mit steigender Entfernung zunimmt. Eine Punktlichtquelle hat auch bei geringem Abstand eine vollständige räumliche Kohärenz. Dieser Zusammenhang wird durch das Van-Cittert-Zernike-Theorem – nach Pieter Hendrik van Cittert (1889–1959) und Frits Zernike – beschrieben, das besagt, dass der komplexe Kohärenzgrad der normierten Fouriertransformierten der Intensitätsverteilung der Lichtquelle entspricht (Bedingungen: kleine Ausdehnungen der Lichtquelle und des Beobachtungsgebiets, ausreichend großer Beobachtungsabstand). Für eine kreisförmige Lichtquelle fällt die räumliche Kohärenz schnell ab und erreicht bei ihr Minimum in Abhängigkeit vom Abstand des Beobachtungsschirms von der Lichtquelle. Danach ist die Kohärenz nicht verloren, sondern kommt für größere Abstände (in sehr schwacher Form) wieder.

Es werden also eigentlich nicht die Zustände gewichtet, sondern die Erwartungswerte selbst (d.h. nicht die „Amplituden“ , sondern die „Intensitäten“ ), wobei im Gegensatz zu folgendem Absatz nichtdiagonale Prozesse nicht vorkommen. Die zugehörige Entropie – eine wichtige physikalische und informationstheoretische Größe – verschwindet hierbei nicht. (Dagegen sind quantenstatistische Zustände „rein“, wenn folgendes gilt: für ein ,    für alle anderen (z.B. ). Auch die Entropie S verschwindet dann, wie aus folgt.   ist die sog. Boltzmann-Konstante.)

Fig-3 Raman scattering and Rayleigh scattering [3] Components of Raman spectrometer Laser source: The laser source is used for the excitation of the sample and resulting scattered light. Injection/rejection filter: The filter delivers the laser to the sample and allows the scattered Raman light to pass through to the spectrograph. Spectrograph: The spectrograph is used to divide the light into separated wavelengths and measure the light intensity at each wavelength. Microscope: The microscope is used to focus the laser light onto a point on the sample surface and collects the Raman light. Computer: It provides instrumental control and data handling and manipulation. Fig-4 Schematic representation of Raman spectrometer with its components [4] Information from Raman spectroscopy The information that is obtained from the Raman spectroscopy is useful in analyzing various aspects of the material compositions. The Raman shifts and relative intensities of all Raman bands of the material allow identifying the material. The individual band changes and shifts which are seen as narrow, or broad can be varied with the intensity of the light. These changes can reveal information about the stresses in the sample and variation in crystallinity. The amount of material and its composition can also be identified, the variations in spectra with the position of the samples also reveal the changes in the material’s homogeneity. Advantages and disadvantages The advantages of Raman spectroscopy include its strength in specifying the chemicals in the materials which is a chemical fingerprint technique. There is no need for sample preparation and it is a non-destructive technique. The Raman spectra are acquired within a few seconds decreasing the processing time. The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

die Stärke der zeitlichen Kohärenz in Abhängigkeit vom Zeitabstand . hat bei den maximalen Wert 1 und fällt je nach Kohärenz mehr oder weniger schnell auf 0 ab. Die Kohärenzzeit ist definiert als der Zeitabstand , bei dem die Kontrastfunktion auf 1/e abgefallen ist. Soll die Kohärenz zwischen verschiedenen Wellen berechnet werden, wird die Kreuzkorrelationsfunktion

Die Bruchstelle zwischen der kohärenten Physik der Quantenmechanik und der inkohärenten Physik der Quantenstatistik liegt in einem subtilen Kapitel der fortgeschrittenen Quantenmechanik genau bei den oben beschriebenen „nichtdiagonalen Prozessen“, wo nämlich in der „Zeitabhängigen Störungstheorie“ die Übergangsraten sich in der niedrigsten relevanten Näherung als proportional zu den Intensitätsquadraten der zeitabhängigen Störung erweisen und die höheren Terme vernachlässigt werden. Das ist bei zeitlich inkohärenter (quasi-„zufälliger“) Störung angemessen, aber z.B. bei Laserstrahlung im Allgemeinen nicht sinnvoll.

Bei einer Lichtquelle wird die zeitliche Kohärenz durch die spektrale Zusammensetzung des Lichts bestimmt. Licht einer monochromatischen Lichtquelle ist zeitlich vollständig kohärent. Licht, das sich aus verschiedenen Wellenlängen zusammensetzt (z. B. wegen Dopplerverbreiterung), ist – je nach Art der Zusammensetzung – partiell kohärent oder inkohärent. Dieser Zusammenhang wird durch das Wiener-Chintschin-Theorem beschrieben, das besagt, dass der Kohärenzgrad (als Autokorrelationsfunktion der Feldstärke) der normierten Fouriertransformation des Lichtspektrums entspricht. Die Kohärenzlänge des Lichts ist als der Punkt definiert, an dem der Kohärenzgrad auf abgefallen ist.

Dagegen ist in der statistischen Physik, einschließlich der Quantenstatistik, die Mittelung von vornherein inkohärent (Superposition von Feldintensitäten). Hier wird mit Wahrscheinlichkeiten angenommen, dass sich der quantenmechanische Zustand des Systems im Zustand befindet. Die statistischen Erwartungswerte sind dementsprechend

In der Optik bedeutet Kohärenz die Interferenzfähigkeit bezüglich eines bestimmten Experimentes und wird mit dem Kontrast des Interferenzmusters, der maximal 1 (vollständig kohärentes Licht) und minimal 0 (vollständig inkohärentes Licht) sein kann, in Verbindung gebracht. Das Interferenzmuster zweier Lichtquellen ist abhängig von ihrer komplexen gegenseitigen Kohärenzfunktion bzw. dem komplexen gegenseitigen Kohärenzgrad bzw. vom Kontrast

Raman spectroscopy is the analytical technique where scattered light is used to measure the vibrational energy modes of the sample. This technique provides both the information on chemical and structural characteristics of the material and also the identification of substances. The Raman spectroscopy extracts the information through the detection of Raman scattering from the sample. Fig-2 is the schematic representation of the Raman spectrometer. Fig-2 Schematic representation of Raman spectrometer [2] Working principle The working principle of Raman spectroscopy is based on the inelastic scattering of monochromatic light from a laser source which changes its frequency upon interaction with the material. Photons from the laser are absorbed by the samples and it is remitted with a frequency shift up or down in comparison to the original monochromatic frequency this is called the Raman effect. These shifts in the frequency provide information about the rotational, vibrational, and other low-frequency transitions in the molecules. This technique can be used in studying the materials like solid, liquid, and gaseous nature. In order to understand spectroscopy better, we should know the difference between Rayleigh scattering and Raman scattering. Rayleigh scattering: In this case, the energy of the molecules is unchanged after the interaction with the molecules. The energy and the wavelength of the scattered photons are equal to that of the incident photon. Hence the energy of the scattering particle is conserved this is called Rayleigh scattering. Raman scattering: In this case, the light is scattered by the molecule, and the oscillating electromagnetic field of a photon induces a polarisation of the molecular electron cloud causing the molecules to be in a higher energy state with the energy of a photon is transferred to the molecule. This can be considered as the formation of a very short-lived complex between the photons and molecules which is commonly called the virtual state of molecules. The virtual state is not stable, and the photon is remitted almost immediately as scattered light. The schematic representation of the Raman and Rayleigh scattering is shown in Fig-3. Fig-3 Raman scattering and Rayleigh scattering [3] Components of Raman spectrometer Laser source: The laser source is used for the excitation of the sample and resulting scattered light. Injection/rejection filter: The filter delivers the laser to the sample and allows the scattered Raman light to pass through to the spectrograph. Spectrograph: The spectrograph is used to divide the light into separated wavelengths and measure the light intensity at each wavelength. Microscope: The microscope is used to focus the laser light onto a point on the sample surface and collects the Raman light. Computer: It provides instrumental control and data handling and manipulation. Fig-4 Schematic representation of Raman spectrometer with its components [4] Information from Raman spectroscopy The information that is obtained from the Raman spectroscopy is useful in analyzing various aspects of the material compositions. The Raman shifts and relative intensities of all Raman bands of the material allow identifying the material. The individual band changes and shifts which are seen as narrow, or broad can be varied with the intensity of the light. These changes can reveal information about the stresses in the sample and variation in crystallinity. The amount of material and its composition can also be identified, the variations in spectra with the position of the samples also reveal the changes in the material’s homogeneity. Advantages and disadvantages The advantages of Raman spectroscopy include its strength in specifying the chemicals in the materials which is a chemical fingerprint technique. There is no need for sample preparation and it is a non-destructive technique. The Raman spectra are acquired within a few seconds decreasing the processing time. The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

Die zeitliche Kohärenz des Lichts kann erhöht werden, indem man einen Wellenlängenfilter einsetzt, der das Spektrum der Lichtquelle begrenzt.

Die Wahl der Lichtquelle ist entscheidend für die Kohärenz. Allerdings ist Kohärenz keine Eigenschaft einer Lichtquelle selbst, sondern der Lichtstrahlen, da die Interferenzfähigkeit des Lichts bei der Ausbreitung verloren gehen kann.

Mit kohärenter Superposition der Zustände (Superposition der Feldamplituden) hat man es auch in der Quantenmechanik zu tun, obwohl der Zusammenhang mit den Messgrößen kompliziert ist: Ein quantenmechanischer Zustandsvektor , interpretiert als Ensemble von Wahrscheinlichkeitsamplituden (genauer: deren Dichten), die durch eine komplexwertige Ortsfunktion dargestellt werden, kann in einer beliebigen Orthonormalbasis mit komplexen Konstanten linear superponiert werden, obwohl die Messwahrscheinlichkeiten selbst quadratisch von abhängen (z.B. gilt für die Aufenthaltwahrscheinlichkeit in einem kleinen Volumen die folgende Aussage: ). Die lineare Superponierbarkeit besagt, dass zugleich gilt, also (Der Index * kennzeichnet hier die konjugiert-komplexe Größe.) Die Aufenthaltswahrscheinlichkeit hängt also quadratisch (genauer: bilinear) von den ab, obwohl die Zustände selbst linear (d.i. kohärent) superponiert werden. Die hier besprochenen Aspekte werden beim Quantencomputer ausgenutzt.

Kohärenz einfach erklärt

[1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

Licht entsteht aus diskontinuierlichen Emissionsakten, die Photonen-Wellenzüge aussenden. Diese Wellenzüge sind jeweils mit einem regelmäßig oszillierenden Feld verbunden, das willkürlich seine Phase verändert. „Dieses Intervall, in dem die Lichtwelle eine Sinusschwingung darstellt, ist ein Maß für ihre zeitliche Kohärenz.“ Die Kohärenzzeit ist somit durch das mittlere Zeitintervall definiert, in dem die Lichtwelle in einer vorhersagbaren Weise schwingt. Eine höhere Kohärenzzeit entspricht einer höheren zeitlichen Kohärenz einer Licht emittierenden Quelle.

Calculators. Engine Displacement Calculator. Effective Compression Ratio Calculator. Cylinder Diameter. Stroke. # of Cylinders. Engine Displacement: Submit ...

Hat das Licht verschiedene Wellenlängen, so sind die einzelnen Streifenmuster zueinander verschoben. Die Streifen sind umso breiter, je größer die Wellenlänge ist. Bei der Überlagerung der Streifenmuster auf einem Beobachtungsschirm löschen sich die Streifen an manchen Orten gegenseitig aus oder verstärken sich gegenseitig (partielle Kohärenz).

In Wellenfeldern kann man auch die Fälle einer zeitlichen und einer räumlichen Kohärenz unterscheiden, auch wenn normalerweise beide Formen der Kohärenz vorhanden sein müssen. Zeitliche Kohärenz liegt vor, wenn entlang der Zeitachse (oft bildlich gleichgesetzt mit der Raumachse parallel zur Ausbreitungsrichtung) eine feste Phasendifferenz besteht. Räumliche Kohärenz liegt vor, wenn entlang einer Raumachse (oft reduziert auf die Raumachsen senkrecht zur Ausbreitungsrichtung) eine feste Phasendifferenz besteht.

Leuchtstoffröhren, Glühlampen und Gasentladungslampen sind räumlich ausgedehnte Lichtquellen (räumlich inkohärent), die weißes Licht einer großen Menge verschiedener Frequenzen (zeitlich inkohärent) erzeugen. Durch Lochblenden und Wellenlängenfilter kann daraus räumlich und zeitlich kohärentes Licht erzeugt werden, jedoch wird dabei die verbleibende Intensität des Lichts stark reduziert, so dass dieses Verfahren wenig praktikabel ist.

Im Beispiel eines Beugungsgitters in der Optik etwa, bei dem eine sehr große Zahl von Teilwellen interferieren muss, genügt die paarweise räumliche Kohärenz noch nicht, um scharfe Beugungsspektren sichtbar werden zu lassen. Zusätzlich muss eine simultane Korrelation zwischen den Phasen aller Teilwellen vorliegen, damit die paarweise interferenzfähigen Teilstrahlen in einem gemeinsamen Beugungsmaximum auf dem Schirm zur Deckung kommen. Diese Bedingung ist insbesondere dann erfüllt, wenn ebene Wellenfronten auf ein ebenes Beugungsgitter treffen. Zwei weitere Anwendungsfälle, bei denen Vielstrahlinterferenz eine Rolle spielt, sind die Braggreflexion und das Fabry-Pérot-Interferometer.

The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

Kohärentes Licht Laser

Optic Clear Solutions is an engineering company that designs and manufactures innovative, ruggedized, and durable optical products for clients in multiple ...

In einfachen Fällen, wie bei periodischen Wellen, sind zwei Teilwellen kohärent, wenn eine feste Phasenbeziehung zueinander besteht. In der Optik bedeutet diese Phasenbeziehung häufig eine gleich bleibende Differenz zwischen den Phasen der Schwingungsperiode. Teilwellen, die sich an einem festen Ort zu einer bestimmten (zeitlich gemittelten) Intensität überlagern (zum Beispiel auf einem Beobachtungsschirm), können sich dann abhängig von der Phasenbeziehung entweder verstärken bzw. auslöschen (vollständige Kohärenz), ein wenig verstärken bzw. abschwächen (partielle Kohärenz) oder zu einer mittleren Intensität ausgleichen (Inkohärenz). Inkohärenz liegt hier vor allem bei unterschiedlichen Frequenzen vor, wenn alle Phasendifferenzen gleich häufig vorkommen und dadurch keine konstruktive oder destruktive Interferenz möglich ist.

Fig-1 Raman spectrometer from S & N lab [1] Definition Raman spectroscopy is the analytical technique where scattered light is used to measure the vibrational energy modes of the sample. This technique provides both the information on chemical and structural characteristics of the material and also the identification of substances. The Raman spectroscopy extracts the information through the detection of Raman scattering from the sample. Fig-2 is the schematic representation of the Raman spectrometer. Fig-2 Schematic representation of Raman spectrometer [2] Working principle The working principle of Raman spectroscopy is based on the inelastic scattering of monochromatic light from a laser source which changes its frequency upon interaction with the material. Photons from the laser are absorbed by the samples and it is remitted with a frequency shift up or down in comparison to the original monochromatic frequency this is called the Raman effect. These shifts in the frequency provide information about the rotational, vibrational, and other low-frequency transitions in the molecules. This technique can be used in studying the materials like solid, liquid, and gaseous nature. In order to understand spectroscopy better, we should know the difference between Rayleigh scattering and Raman scattering. Rayleigh scattering: In this case, the energy of the molecules is unchanged after the interaction with the molecules. The energy and the wavelength of the scattered photons are equal to that of the incident photon. Hence the energy of the scattering particle is conserved this is called Rayleigh scattering. Raman scattering: In this case, the light is scattered by the molecule, and the oscillating electromagnetic field of a photon induces a polarisation of the molecular electron cloud causing the molecules to be in a higher energy state with the energy of a photon is transferred to the molecule. This can be considered as the formation of a very short-lived complex between the photons and molecules which is commonly called the virtual state of molecules. The virtual state is not stable, and the photon is remitted almost immediately as scattered light. The schematic representation of the Raman and Rayleigh scattering is shown in Fig-3. Fig-3 Raman scattering and Rayleigh scattering [3] Components of Raman spectrometer Laser source: The laser source is used for the excitation of the sample and resulting scattered light. Injection/rejection filter: The filter delivers the laser to the sample and allows the scattered Raman light to pass through to the spectrograph. Spectrograph: The spectrograph is used to divide the light into separated wavelengths and measure the light intensity at each wavelength. Microscope: The microscope is used to focus the laser light onto a point on the sample surface and collects the Raman light. Computer: It provides instrumental control and data handling and manipulation. Fig-4 Schematic representation of Raman spectrometer with its components [4] Information from Raman spectroscopy The information that is obtained from the Raman spectroscopy is useful in analyzing various aspects of the material compositions. The Raman shifts and relative intensities of all Raman bands of the material allow identifying the material. The individual band changes and shifts which are seen as narrow, or broad can be varied with the intensity of the light. These changes can reveal information about the stresses in the sample and variation in crystallinity. The amount of material and its composition can also be identified, the variations in spectra with the position of the samples also reveal the changes in the material’s homogeneity. Advantages and disadvantages The advantages of Raman spectroscopy include its strength in specifying the chemicals in the materials which is a chemical fingerprint technique. There is no need for sample preparation and it is a non-destructive technique. The Raman spectra are acquired within a few seconds decreasing the processing time. The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

A simple, therapeutic, inexpensive, way to correct several visual disorders. • Provide an immediate correction. • They are more comfortable, more cosmetically ...

Wenn man räumlich nicht-kohärentes Licht durch einen sehr schmalen Spalt sendet, verhält sich das Licht dahinter, als wäre der Spalt eine Punktlichtquelle (in einer Dimension), die Elementarwellen aussendet (siehe Huygenssches Prinzip). Die Größe des räumlichen Kohärenzgebiets ist im Fall eines einfachen Spaltes indirekt proportional zur Spaltgröße (van-Cittert-Zernike-Theorem, Verdetsche Kohärenzbedingung). Mit zunehmendem Abstand zur Lichtquelle nimmt die Winkelausdehnung der Lichtquelle ab und damit die räumliche Kohärenz zu.

Fig-1 Raman spectrometer from S & N lab [1] Definition Raman spectroscopy is the analytical technique where scattered light is used to measure the vibrational energy modes of the sample. This technique provides both the information on chemical and structural characteristics of the material and also the identification of substances. The Raman spectroscopy extracts the information through the detection of Raman scattering from the sample. Fig-2 is the schematic representation of the Raman spectrometer. Fig-2 Schematic representation of Raman spectrometer [2] Working principle The working principle of Raman spectroscopy is based on the inelastic scattering of monochromatic light from a laser source which changes its frequency upon interaction with the material. Photons from the laser are absorbed by the samples and it is remitted with a frequency shift up or down in comparison to the original monochromatic frequency this is called the Raman effect. These shifts in the frequency provide information about the rotational, vibrational, and other low-frequency transitions in the molecules. This technique can be used in studying the materials like solid, liquid, and gaseous nature. In order to understand spectroscopy better, we should know the difference between Rayleigh scattering and Raman scattering. Rayleigh scattering: In this case, the energy of the molecules is unchanged after the interaction with the molecules. The energy and the wavelength of the scattered photons are equal to that of the incident photon. Hence the energy of the scattering particle is conserved this is called Rayleigh scattering. Raman scattering: In this case, the light is scattered by the molecule, and the oscillating electromagnetic field of a photon induces a polarisation of the molecular electron cloud causing the molecules to be in a higher energy state with the energy of a photon is transferred to the molecule. This can be considered as the formation of a very short-lived complex between the photons and molecules which is commonly called the virtual state of molecules. The virtual state is not stable, and the photon is remitted almost immediately as scattered light. The schematic representation of the Raman and Rayleigh scattering is shown in Fig-3. Fig-3 Raman scattering and Rayleigh scattering [3] Components of Raman spectrometer Laser source: The laser source is used for the excitation of the sample and resulting scattered light. Injection/rejection filter: The filter delivers the laser to the sample and allows the scattered Raman light to pass through to the spectrograph. Spectrograph: The spectrograph is used to divide the light into separated wavelengths and measure the light intensity at each wavelength. Microscope: The microscope is used to focus the laser light onto a point on the sample surface and collects the Raman light. Computer: It provides instrumental control and data handling and manipulation. Fig-4 Schematic representation of Raman spectrometer with its components [4] Information from Raman spectroscopy The information that is obtained from the Raman spectroscopy is useful in analyzing various aspects of the material compositions. The Raman shifts and relative intensities of all Raman bands of the material allow identifying the material. The individual band changes and shifts which are seen as narrow, or broad can be varied with the intensity of the light. These changes can reveal information about the stresses in the sample and variation in crystallinity. The amount of material and its composition can also be identified, the variations in spectra with the position of the samples also reveal the changes in the material’s homogeneity. Advantages and disadvantages The advantages of Raman spectroscopy include its strength in specifying the chemicals in the materials which is a chemical fingerprint technique. There is no need for sample preparation and it is a non-destructive technique. The Raman spectra are acquired within a few seconds decreasing the processing time. The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

Image

Image

[2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

die Stärke der räumlichen Kohärenz zwischen den Punkten A und B. Ein Volumen, in dem alle Punktepaare A, B einen Kontrast aufweisen, bildet ein sogenanntes Kohärenzvolumen, innerhalb dessen räumliche Kohärenz vorliegt. Meistens wird unter dem Begriff der räumlichen Kohärenz nur die Kohärenz quer zur Ausbreitungsrichtung der Welle verstanden, was präziser mit transversal räumliche Kohärenz bezeichnet werden müsste. Die räumliche Kohärenz entlang der Ausbreitungsrichtung, also die longitudinal räumliche Kohärenz, wird dagegen oft mit der zeitlichen Kohärenz gleichgesetzt, was nur näherungsweise korrekt ist.

Kohärentes Licht Wirkung

„Natürliches“ Licht entsteht, wenn ein Elektron in einem Atom von einem angeregten in einen weniger angeregten Zustand übergeht. Beim Zerfall des angeregten Zustandes schwingt in semiklassischer Vorstellung das Elektron eine gewisse Zeit. Während dieser Zeit (= Lebensdauer) wird es ein Photon emittieren (gedämpfte Schwingung). Typische Lebensdauern solcher atomarer Prozesse sind (= Kohärenzzeit). Dieses führt zu Wellenpaketen mit Längen von (= Kohärenzlänge) mit einer Frequenzunschärfe von etwa 100 MHz.

Aus der Fouriertransformation folgt direkt, dass – je nach Form des Spektrums (im obigen Fall des gaußförmigen Spektrums beispielsweise nicht, wohl aber z.B. für eine Schwebung, bei der die Autokorrelationsfunktion periodisch ist) – auch für größere Weglängenunterschiede als wieder eine hohe Kohärenz erreicht werden kann. Diese Eigenschaft der Kohärenz lässt sich im anschaulichen Bild der endlich langen Wellenzüge (s.u.) nicht erklären.

Im Falle rein zeitlicher Kohärenz werden nur Korrelationen mit A = B betrachtet. Hier liefert die Kontrastfunktion für zeitliche Kohärenz

Sämtliche physikalische Wellen wie Lichtwellen, Radarwellen, Schallwellen oder Wasserwellen können auf eine bestimmte Weise kohärent zu anderen Wellen sein, oder es kann Kohärenz zwischen entsprechenden Teilwellen bestehen. Ursache der Kohärenz kann eine gemeinsame Entstehungsgeschichte der Wellen sein. Wenn beispielsweise bei der Wellenerzeugung derselbe ursächliche Mechanismus zu Grunde lag, können gleichbleibende Schwingungsmuster im Wellenzug entstehen, die später bei einem Vergleich von Teilwellen sichtbar gemacht werden können. Sind die Wellenamplituden zweier Wellen direkt miteinander korreliert, so zeigt sich dies bei der Überlagerung der Wellen am Auftreten von stationären (räumlich und zeitlich unveränderlichen) Interferenzerscheinungen. In anderen Fällen ist zum Teil ein technisch höherer Aufwand oder eine kompliziertere mathematische Betrachtung des Wellenverlaufs notwendig, um eine Kohärenz in den Wellen nachzuweisen.

Zeitliche Kohärenz ist dann notwendig, wenn die Welle zu einer zeitlich verschobenen Kopie ihrer selbst kohärent sein soll. Das ist beispielsweise dann der Fall, wenn in einem Michelson-Interferometer die Weglängen im Objekt- und Referenzarm unterschiedliche Längen aufweisen. Die Zeit, nach der sich die Relativwerte von Phase und/oder Amplitude signifikant verändert haben (so dass die Korrelation in entscheidendem Maße abnimmt), wird Kohärenzzeit genannt. Bei ist die Kohärenz noch perfekt, sie hat sich aber nach der Zeit entscheidend verringert. Die Kohärenzlänge ist als die Entfernung definiert, die die Welle innerhalb der Kohärenzzeit zurücklegt.

Allgemein ist der quantenmechanische Erwartungswert einer Messgröße , die durch einen selbstadjungierten Operator repräsentiert wird, durch folgende Formel gegeben (wobei die Ausdrücke in spitzen Klammern das quantenmechanische Skalarprodukt bedeuten, worauf an dieser Stelle nicht eingegangen werden kann):   Obwohl dieser Ausdruck nichtlinear von abhängt, ist die kohärente Superponierbarkeit der Zustände das Wesentliche: auch die nichtdiagonalen Elemente, geben im Allgemeinen gleich signifikante Beiträge zum Resultat wie die diagonalen Elemente.

Zeitliche Kohärenz

The working principle of Raman spectroscopy is based on the inelastic scattering of monochromatic light from a laser source which changes its frequency upon interaction with the material. Photons from the laser are absorbed by the samples and it is remitted with a frequency shift up or down in comparison to the original monochromatic frequency this is called the Raman effect. These shifts in the frequency provide information about the rotational, vibrational, and other low-frequency transitions in the molecules. This technique can be used in studying the materials like solid, liquid, and gaseous nature. In order to understand spectroscopy better, we should know the difference between Rayleigh scattering and Raman scattering. Rayleigh scattering: In this case, the energy of the molecules is unchanged after the interaction with the molecules. The energy and the wavelength of the scattered photons are equal to that of the incident photon. Hence the energy of the scattering particle is conserved this is called Rayleigh scattering. Raman scattering: In this case, the light is scattered by the molecule, and the oscillating electromagnetic field of a photon induces a polarisation of the molecular electron cloud causing the molecules to be in a higher energy state with the energy of a photon is transferred to the molecule. This can be considered as the formation of a very short-lived complex between the photons and molecules which is commonly called the virtual state of molecules. The virtual state is not stable, and the photon is remitted almost immediately as scattered light. The schematic representation of the Raman and Rayleigh scattering is shown in Fig-3. Fig-3 Raman scattering and Rayleigh scattering [3] Components of Raman spectrometer Laser source: The laser source is used for the excitation of the sample and resulting scattered light. Injection/rejection filter: The filter delivers the laser to the sample and allows the scattered Raman light to pass through to the spectrograph. Spectrograph: The spectrograph is used to divide the light into separated wavelengths and measure the light intensity at each wavelength. Microscope: The microscope is used to focus the laser light onto a point on the sample surface and collects the Raman light. Computer: It provides instrumental control and data handling and manipulation. Fig-4 Schematic representation of Raman spectrometer with its components [4] Information from Raman spectroscopy The information that is obtained from the Raman spectroscopy is useful in analyzing various aspects of the material compositions. The Raman shifts and relative intensities of all Raman bands of the material allow identifying the material. The individual band changes and shifts which are seen as narrow, or broad can be varied with the intensity of the light. These changes can reveal information about the stresses in the sample and variation in crystallinity. The amount of material and its composition can also be identified, the variations in spectra with the position of the samples also reveal the changes in the material’s homogeneity. Advantages and disadvantages The advantages of Raman spectroscopy include its strength in specifying the chemicals in the materials which is a chemical fingerprint technique. There is no need for sample preparation and it is a non-destructive technique. The Raman spectra are acquired within a few seconds decreasing the processing time. The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

LED Strobe Light, Compact Programmable Class 1 Bracket-Mount 5.04′′X1.06′′ Multi-volt, amber, clear lens, box

Fig-3 Raman scattering and Rayleigh scattering [3] Components of Raman spectrometer Laser source: The laser source is used for the excitation of the sample and resulting scattered light. Injection/rejection filter: The filter delivers the laser to the sample and allows the scattered Raman light to pass through to the spectrograph. Spectrograph: The spectrograph is used to divide the light into separated wavelengths and measure the light intensity at each wavelength. Microscope: The microscope is used to focus the laser light onto a point on the sample surface and collects the Raman light. Computer: It provides instrumental control and data handling and manipulation. Fig-4 Schematic representation of Raman spectrometer with its components [4] Information from Raman spectroscopy The information that is obtained from the Raman spectroscopy is useful in analyzing various aspects of the material compositions. The Raman shifts and relative intensities of all Raman bands of the material allow identifying the material. The individual band changes and shifts which are seen as narrow, or broad can be varied with the intensity of the light. These changes can reveal information about the stresses in the sample and variation in crystallinity. The amount of material and its composition can also be identified, the variations in spectra with the position of the samples also reveal the changes in the material’s homogeneity. Advantages and disadvantages The advantages of Raman spectroscopy include its strength in specifying the chemicals in the materials which is a chemical fingerprint technique. There is no need for sample preparation and it is a non-destructive technique. The Raman spectra are acquired within a few seconds decreasing the processing time. The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

Im Falle rein räumlicher Kohärenz werden nur Korrelationen mit betrachtet. Hier liefert die Kontrastfunktion für räumliche Kohärenz

Die für Interferenzfähigkeit notwendige Kohärenz bei Wellen kann anhand der Korrelationsfunktion quantifiziert werden[1]. Diese Funktion liefert ein Maß für die Ähnlichkeit des zeitlichen Verlaufs zweier in Verbindung gebrachter Wellenamplituden.

Fig-2 Schematic representation of Raman spectrometer [2] Working principle The working principle of Raman spectroscopy is based on the inelastic scattering of monochromatic light from a laser source which changes its frequency upon interaction with the material. Photons from the laser are absorbed by the samples and it is remitted with a frequency shift up or down in comparison to the original monochromatic frequency this is called the Raman effect. These shifts in the frequency provide information about the rotational, vibrational, and other low-frequency transitions in the molecules. This technique can be used in studying the materials like solid, liquid, and gaseous nature. In order to understand spectroscopy better, we should know the difference between Rayleigh scattering and Raman scattering. Rayleigh scattering: In this case, the energy of the molecules is unchanged after the interaction with the molecules. The energy and the wavelength of the scattered photons are equal to that of the incident photon. Hence the energy of the scattering particle is conserved this is called Rayleigh scattering. Raman scattering: In this case, the light is scattered by the molecule, and the oscillating electromagnetic field of a photon induces a polarisation of the molecular electron cloud causing the molecules to be in a higher energy state with the energy of a photon is transferred to the molecule. This can be considered as the formation of a very short-lived complex between the photons and molecules which is commonly called the virtual state of molecules. The virtual state is not stable, and the photon is remitted almost immediately as scattered light. The schematic representation of the Raman and Rayleigh scattering is shown in Fig-3. Fig-3 Raman scattering and Rayleigh scattering [3] Components of Raman spectrometer Laser source: The laser source is used for the excitation of the sample and resulting scattered light. Injection/rejection filter: The filter delivers the laser to the sample and allows the scattered Raman light to pass through to the spectrograph. Spectrograph: The spectrograph is used to divide the light into separated wavelengths and measure the light intensity at each wavelength. Microscope: The microscope is used to focus the laser light onto a point on the sample surface and collects the Raman light. Computer: It provides instrumental control and data handling and manipulation. Fig-4 Schematic representation of Raman spectrometer with its components [4] Information from Raman spectroscopy The information that is obtained from the Raman spectroscopy is useful in analyzing various aspects of the material compositions. The Raman shifts and relative intensities of all Raman bands of the material allow identifying the material. The individual band changes and shifts which are seen as narrow, or broad can be varied with the intensity of the light. These changes can reveal information about the stresses in the sample and variation in crystallinity. The amount of material and its composition can also be identified, the variations in spectra with the position of the samples also reveal the changes in the material’s homogeneity. Advantages and disadvantages The advantages of Raman spectroscopy include its strength in specifying the chemicals in the materials which is a chemical fingerprint technique. There is no need for sample preparation and it is a non-destructive technique. The Raman spectra are acquired within a few seconds decreasing the processing time. The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

gegeben ist, liefert nun direkt die Stärke der Kohärenz als Wert zwischen 0 und 1. Im Allgemeinen unterscheidet man drei Fälle:

Der qualitative Unterschied zwischen End- und Anfangszustand des Systems, kohärentes Strahlungsfeld versus zufälliger Anfangszustand, wird hier als „höhere Näherung“ genau so vernachlässigt, wie dies in den Formeln der statistischen Physik geschieht, wo man im Grunde nicht zwischen Anfang- und Endzustand unterscheidet. Auch der Übergang von der Reversibiltät der Quantenmechanik (bzw. des klassischen Pendants, der sog. Hamiltonschen Mechanik) zur Irreversibilität genereller Vorgänge der statistischen Physik ist genau an dieser Stelle anzusiedeln (, mit signifikanter Pfeilrichtung, z.B. , mit der reduzierten Planckschen Konstante , der Dirac-Funktion , den Energien von Anfangs- bzw. Endzustand. sowie der Kreisfrequenz der als monochromatisch angenommenen Störung).

Davon abgeleitet wird in der Quantenmechanik von kohärenter Überlagerung verschiedener Zustände gesprochen, wenn sie unter Beachtung ihrer quantenmechanischen Phasen addiert werden müssen wie Vektoren.

Berechnet man nach dem Wiener-Chintschin-Theorem die Kohärenzfunktion für den Fall eines Lasers mit einem gaußförmigen Spektrum (Bandbreite FWHM = , Schwerpunktwellenlänge ), so erhält man eine gaußförmige Kohärenzfunktion mit der Kohärenzlänge .

Image

Kohärenz Beispiele

Charakteristisch für die Kohärenz zweier Wellen, die am selben Ort eintreffen, ist, dass ihre Amplituden sich addieren. Im Fall der Inkohärenz addieren sich ihre Intensitäten, also die (Absolut-)Quadrate ihrer Amplituden.

Das resultierende Licht setzt sich additiv aus Wellenpaketen zusammen, die von vielen unterschiedlichen Atomen ausgesandt wurden und sich in der Phase und auch in der Frequenz unterscheiden. Da die Atome meist in thermischer Bewegung sind, zeigt das von solchen Atomen emittierte Licht Dopplerverbreiterung, bei starker gegenseitiger Wechselwirkung (z.B. Stöße) der Atome auch Druckverbreiterung. Beide Effekte verkürzen die Kohärenzzeit bzw. -länge des emittierten Lichts erheblich.

Den Zusammenhang zwischen Ausdehnung der Lichtquelle und räumlicher Kohärenz kann man sich am Beispiel des Doppelspalt-Interferenzversuchs veranschaulichen. Am Beobachtungsschirm entsteht abhängig von den Laufzeitunterschieden der beiden Strahlen ein Interferenzmuster. Hierfür ist eine ausreichend hohe zeitliche Kohärenz der Lichtstrahlen nötig. Für den Punkt des Beobachtungsschirms, der zwischen den beiden Spalten liegt, haben die Lichtstrahlen keine Laufzeitdifferenz. Hier hat das Interferenzmuster das nullte Maximum. Bei einer ausgedehnten Lichtquelle ist der Punkt mit Laufzeitdifferenz gleich null für jeden Punkt der Lichtquelle leicht verschoben. Die einzelnen Interferenzmuster verwischen sich je nach Größe der Lichtquelle gegenseitig.

Statistische Methoden, auf denen z.B. die Signalverstärkung am Ende einer Glasfaser beruht, sind also schädlich für die Kohärenz, was u.a. zur Reichweitenbegrenzung der Quantenkryptographie führt, die gegenwärtig nur auf Abständen bis zu ca. 100 km durchgeführt werden kann, während die Methoden der klassischen Informatik in ihrer Reichweite praktisch unbegrenzt sind.

Die gezeigte mathematische Definition der Kohärenz beschreibt nur die Korrelation zwischen zwei Punkten einer Welle. In vielen Anwendungen muss jedoch die Bedingung erfüllt sein, dass sich sehr viele Teilwellen zu einem gemeinsamen Interferenzmuster überlagern können. Dabei ist die paarweise Kohärenz der Teilwellen allein nicht hinreichend. Der Kohärenzbegriff muss hierfür erweitert oder mit Zusatzbedingungen verknüpft werden.

NAR Murty · 2017 — We set out to characterize how viewpoint invariance in monkey inferior temporal (IT) neurons is influenced by two image manipulations-silhouetting and ...

Based on their standard width of 56 mm, they can easily replace older line scan camera models. This camera has two "mini" (SDR/HDR) Camera Link connectors. Base ...

Soll die Welle mit einer räumlich verschobenen Kopie ihrer selbst interferieren, ist räumliche Kohärenz nötig. Dieses ist beispielsweise im youngschen Doppelspaltversuch der Fall: Hier werden durch die beiden Spalte zwei Punkte aus der einfallenden Welle herausgegriffen und zur Interferenz gebracht. Wie weit diese beiden Punkte auseinanderliegen dürfen, beschreibt die Ausdehnung des Gebiets der räumlichen Kohärenz.

Räumliche Kohärenz

The information that is obtained from the Raman spectroscopy is useful in analyzing various aspects of the material compositions. The Raman shifts and relative intensities of all Raman bands of the material allow identifying the material. The individual band changes and shifts which are seen as narrow, or broad can be varied with the intensity of the light. These changes can reveal information about the stresses in the sample and variation in crystallinity. The amount of material and its composition can also be identified, the variations in spectra with the position of the samples also reveal the changes in the material’s homogeneity. Advantages and disadvantages The advantages of Raman spectroscopy include its strength in specifying the chemicals in the materials which is a chemical fingerprint technique. There is no need for sample preparation and it is a non-destructive technique. The Raman spectra are acquired within a few seconds decreasing the processing time. The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

Fig-2 Schematic representation of Raman spectrometer [2] Working principle The working principle of Raman spectroscopy is based on the inelastic scattering of monochromatic light from a laser source which changes its frequency upon interaction with the material. Photons from the laser are absorbed by the samples and it is remitted with a frequency shift up or down in comparison to the original monochromatic frequency this is called the Raman effect. These shifts in the frequency provide information about the rotational, vibrational, and other low-frequency transitions in the molecules. This technique can be used in studying the materials like solid, liquid, and gaseous nature. In order to understand spectroscopy better, we should know the difference between Rayleigh scattering and Raman scattering. Rayleigh scattering: In this case, the energy of the molecules is unchanged after the interaction with the molecules. The energy and the wavelength of the scattered photons are equal to that of the incident photon. Hence the energy of the scattering particle is conserved this is called Rayleigh scattering. Raman scattering: In this case, the light is scattered by the molecule, and the oscillating electromagnetic field of a photon induces a polarisation of the molecular electron cloud causing the molecules to be in a higher energy state with the energy of a photon is transferred to the molecule. This can be considered as the formation of a very short-lived complex between the photons and molecules which is commonly called the virtual state of molecules. The virtual state is not stable, and the photon is remitted almost immediately as scattered light. The schematic representation of the Raman and Rayleigh scattering is shown in Fig-3. Fig-3 Raman scattering and Rayleigh scattering [3] Components of Raman spectrometer Laser source: The laser source is used for the excitation of the sample and resulting scattered light. Injection/rejection filter: The filter delivers the laser to the sample and allows the scattered Raman light to pass through to the spectrograph. Spectrograph: The spectrograph is used to divide the light into separated wavelengths and measure the light intensity at each wavelength. Microscope: The microscope is used to focus the laser light onto a point on the sample surface and collects the Raman light. Computer: It provides instrumental control and data handling and manipulation. Fig-4 Schematic representation of Raman spectrometer with its components [4] Information from Raman spectroscopy The information that is obtained from the Raman spectroscopy is useful in analyzing various aspects of the material compositions. The Raman shifts and relative intensities of all Raman bands of the material allow identifying the material. The individual band changes and shifts which are seen as narrow, or broad can be varied with the intensity of the light. These changes can reveal information about the stresses in the sample and variation in crystallinity. The amount of material and its composition can also be identified, the variations in spectra with the position of the samples also reveal the changes in the material’s homogeneity. Advantages and disadvantages The advantages of Raman spectroscopy include its strength in specifying the chemicals in the materials which is a chemical fingerprint technique. There is no need for sample preparation and it is a non-destructive technique. The Raman spectra are acquired within a few seconds decreasing the processing time. The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

I am a postgraduate researcher at the University of Leeds. I have completed my master's degree in the Erasmus Tribos program at the University of Leeds, University of Ljubljana, and University of Coimbra and my bachelor's degree in Mechanical Engineering from VTU in NMIT, India. I am an editor and social networking manager at TriboNet. I have a YouTube channel called Tribo Geek where I upload videos on travel, research life, and topics for master's and PhD students.

Die Zerfälle durch endliche Wellenzüge zu modellieren, kann nicht alle Aspekte der zeitlichen Kohärenz erklären, dient aber als Hilfsvorstellung in einfachen Fällen.

Zeitliche und räumliche Kohärenz

Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

[3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

Andererseits können auch Wellen mit unterschiedlichen Frequenzen eine Kohärenz zueinander aufweisen. Technisch spielt diese Art der Kohärenz eine Rolle beim Frequenzkamm oder in der Radartechnik. Erzeugt wird diese Kohärenz durch Modenkopplung oder Frequenzverdopplung oder -vervielfachung.

Auch aus der Messung des Spektrums lässt sich durch Fouriertransformation die zeitliche Kohärenz bestimmen. Umgekehrt kann auch das Spektrum einer Lichtquelle bestimmt werden, indem der Interferenz-Kontrast in einem Michelson-Interferometer gemessen wird, während der Weglängenunterschied variiert wird (FTIR-Spektrometer).

Für Zweistrahlinterferenz einer Welle mit ihrer räumlich und zeitlich verschobenen Kopie ergibt sich die Zweistrahlinterferenzformel .

UVkollimiert. Lampen-Lichtquelle. Zu meinen Favoriten ... Eigenschaften. Beleuchtungstechnologie: Lampen; Spektum: UV; Weitere Eigenschaften: kollimiert ...

Kohärenz (von lat.: cohaerere = zusammenhängen) bezeichnet bei einem ausgedehnten physikalischen Wellenfeld die Eigenschaft, dass sich die momentanen Auslenkungen an verschiedenen Orten zeitlich bis auf eine konstant bleibende Phasenverschiebung auf dieselbe Weise ändern. Als Folge kann bei der Überlagerung von kohärenten Wellen eine räumlich stationäre Interferenz sichtbar werden. Das Fehlen von Kohärenz wird als Inkohärenz bezeichnet.

Ähnlich wie im Fall der zeitlichen Kohärenz kann die räumliche Kohärenz durch Messung des Kontrastes eines Interferenzmusters bestimmt werden, wenn ein Interferometer eingesetzt wird, das empfindlich auf die räumliche Kohärenz ist (Verwandte des Doppelspaltaufbaus). Bei der Stellarinterferometrie wird durch Messung des Kontrasts über die räumliche Kohärenz die Winkelausdehnung von Sternen bestimmt.

Man kann die Kohärenzzeit bzw. Kohärenzlänge einer Lichtwelle bestimmen, indem man diese in zwei Teilstrahlen aufteilt und sie später wieder vereint – etwa in einem Michelson-Interferometer oder Mach-Zehnder-Interferometer. Man sieht Interferenzerscheinungen in einer solchen Anordnung nur dann, wenn der Laufzeitunterschied bzw. der Wegunterschied zwischen den Teilwellen kleiner bleibt als die Kohärenzzeit bzw. Kohärenzlänge der von den Atomen ausgesandten Wellenzüge.

In der klassischen Optik wird Kohärenz mit der Interferenzfähigkeit von Licht in direkten Zusammenhang gebracht. Der Kontrast des Interferenzmusters V (engl. Visibility) ist ein Maß für die Kohärenz des Lichts. Insbesondere in der Optik spielen die beiden Spezialfälle der räumlichen und zeitlichen Kohärenz eine große Rolle.

The advantages of Raman spectroscopy include its strength in specifying the chemicals in the materials which is a chemical fingerprint technique. There is no need for sample preparation and it is a non-destructive technique. The Raman spectra are acquired within a few seconds decreasing the processing time. The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

Kohärenz spielt eine Rolle in allen Bereichen der Physik, in denen Interferenzen beobachtet werden, insbesondere in der Laseroptik, der Spektroskopie und der Interferometrie. Dabei spielt es für die Bedeutung der Kohärenz keine Rolle, ob es sich um Lichtwellen oder um Materiewellen handelt. Da es insbesondere in der Lasertechnik möglich ist, von einzelnen Photonen zahlreiche Kopien mit zusammenhängender Entstehungsgeschichte zu erzeugen, so hat die Kohärenz insbesondere auch eine große Bedeutung in deren Anwendungsgebieten, wie der Erstellung von Hologrammen, der Quantenkryptographie oder der Signalverarbeitung.

Laserlicht dagegen gilt als das am besten erzeugbare monochromatische Licht überhaupt und hat die größte Kohärenzlänge (bis zu mehreren Kilometern). Ein Helium-Neon-Laser kann beispielsweise Licht mit Kohärenzlängen von über 1 km produzieren. Allerdings sind nicht alle Laser monochromatisch (z.B. kann ein Titan:Saphir-Laser auch spektrale Breiten von Δλ ≈ 2 – 70 nm aufweisen). LEDs sind weniger monochromatisch (Δλ ≈ 30 nm) und haben deshalb kürzere Kohärenzzeiten als die meisten monochromatischen Laser. Da ein Laser in der Regel über seine gesamte Austrittsapertur hinweg dieselbe Phase aufweist, besitzt das emittierte Laserlicht zudem eine sehr hohe räumliche Kohärenz.

Field of view defines the maximum area of a sample that a camera can image, determined by the focal length of the lens and the sensor size. Sensor size is ...

Kohärenz Psychologie

Microscope Objective, Tube, and Scan Lens Tutorials · Table of Contents · Objective Identification · M = L / F . · NA = ni × sinθ · FN = Field of View Diameter × ...

definiert zunächst die (komplexe) Kreuzkorrelationsfunktion zwischen den Zeitverläufen zweier betrachteter Amplituden. Die beiden Amplituden werden an den Ortspunkten A und B der Welle und bei einem Zeitunterschied von herausgegriffen und als Funktion der Zeit verglichen.

Fig-4 Schematic representation of Raman spectrometer with its components [4] Information from Raman spectroscopy The information that is obtained from the Raman spectroscopy is useful in analyzing various aspects of the material compositions. The Raman shifts and relative intensities of all Raman bands of the material allow identifying the material. The individual band changes and shifts which are seen as narrow, or broad can be varied with the intensity of the light. These changes can reveal information about the stresses in the sample and variation in crystallinity. The amount of material and its composition can also be identified, the variations in spectra with the position of the samples also reveal the changes in the material’s homogeneity. Advantages and disadvantages The advantages of Raman spectroscopy include its strength in specifying the chemicals in the materials which is a chemical fingerprint technique. There is no need for sample preparation and it is a non-destructive technique. The Raman spectra are acquired within a few seconds decreasing the processing time. The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

To calculate the total magnification, simply multiply the magnification of the objective lens by the magnification of the eyepiece. For example, if the ...

The interaction of light on materials is very different it may be transmitted, reflected, or scattered; the wavelength of the light affects the interaction with materials in different colors. This study of light is called spectroscopy. Based on this an Indian physicist C.V Raman observed the scattering phenomenon where the light is scattered by the molecules and hence this phenomenon was named Raman scattering. The analysis/characterization technique that deals with Raman scattering is Raman spectroscopy. In Fig-1 Raman spectrometer from S & N lab is shown. Fig-1 Raman spectrometer from S & N lab [1] Definition Raman spectroscopy is the analytical technique where scattered light is used to measure the vibrational energy modes of the sample. This technique provides both the information on chemical and structural characteristics of the material and also the identification of substances. The Raman spectroscopy extracts the information through the detection of Raman scattering from the sample. Fig-2 is the schematic representation of the Raman spectrometer. Fig-2 Schematic representation of Raman spectrometer [2] Working principle The working principle of Raman spectroscopy is based on the inelastic scattering of monochromatic light from a laser source which changes its frequency upon interaction with the material. Photons from the laser are absorbed by the samples and it is remitted with a frequency shift up or down in comparison to the original monochromatic frequency this is called the Raman effect. These shifts in the frequency provide information about the rotational, vibrational, and other low-frequency transitions in the molecules. This technique can be used in studying the materials like solid, liquid, and gaseous nature. In order to understand spectroscopy better, we should know the difference between Rayleigh scattering and Raman scattering. Rayleigh scattering: In this case, the energy of the molecules is unchanged after the interaction with the molecules. The energy and the wavelength of the scattered photons are equal to that of the incident photon. Hence the energy of the scattering particle is conserved this is called Rayleigh scattering. Raman scattering: In this case, the light is scattered by the molecule, and the oscillating electromagnetic field of a photon induces a polarisation of the molecular electron cloud causing the molecules to be in a higher energy state with the energy of a photon is transferred to the molecule. This can be considered as the formation of a very short-lived complex between the photons and molecules which is commonly called the virtual state of molecules. The virtual state is not stable, and the photon is remitted almost immediately as scattered light. The schematic representation of the Raman and Rayleigh scattering is shown in Fig-3. Fig-3 Raman scattering and Rayleigh scattering [3] Components of Raman spectrometer Laser source: The laser source is used for the excitation of the sample and resulting scattered light. Injection/rejection filter: The filter delivers the laser to the sample and allows the scattered Raman light to pass through to the spectrograph. Spectrograph: The spectrograph is used to divide the light into separated wavelengths and measure the light intensity at each wavelength. Microscope: The microscope is used to focus the laser light onto a point on the sample surface and collects the Raman light. Computer: It provides instrumental control and data handling and manipulation. Fig-4 Schematic representation of Raman spectrometer with its components [4] Information from Raman spectroscopy The information that is obtained from the Raman spectroscopy is useful in analyzing various aspects of the material compositions. The Raman shifts and relative intensities of all Raman bands of the material allow identifying the material. The individual band changes and shifts which are seen as narrow, or broad can be varied with the intensity of the light. These changes can reveal information about the stresses in the sample and variation in crystallinity. The amount of material and its composition can also be identified, the variations in spectra with the position of the samples also reveal the changes in the material’s homogeneity. Advantages and disadvantages The advantages of Raman spectroscopy include its strength in specifying the chemicals in the materials which is a chemical fingerprint technique. There is no need for sample preparation and it is a non-destructive technique. The Raman spectra are acquired within a few seconds decreasing the processing time. The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html

Während die häufig gewählte mathematische Beschreibung einer Welle als Sinuskurve zeitlich und räumlich unbegrenzt gedacht ist, sind reale physikalische Wellen zeitlich und räumlich begrenzt. Auch haben zwei durch verschiedene Anordnungen erzeugte Wellen meist leicht unterschiedliche Frequenzen. Das Vorhandensein von Kohärenz deutet daher meist auf eine gemeinsame oder zusammenhängende Entstehungsgeschichte der Wellen hin. Je nach Zeitdauer dieser Entstehung kann die Kohärenz somit zeitlich begrenzt sein, die dabei zurückgelegte Weglänge nennt man die Kohärenzlänge, die die räumliche Ausdehnung ihrer Kohärenz bemisst.

Den Zusammenhang zwischen dem Spektrum der Lichtquelle und der zeitlichen Kohärenz kann man sich am Beispiel des Michelson-Interferometers veranschaulichen. Bei verkipptem Referenzspiegel ist der Weglängenunterschied beider Strahlen linear von der Kipprichtung abhängig. Entspricht der Weglängenunterschied einem ganzzahligen Vielfachen der Wellenlänge, so interferieren die Strahlen konstruktiv, und das Interferenzmuster hat ein Maximum. Bei monochromatischem Licht ist ein Streifenmuster auf dem Schirm sichtbar.

Fig-4 Schematic representation of Raman spectrometer with its components [4] Information from Raman spectroscopy The information that is obtained from the Raman spectroscopy is useful in analyzing various aspects of the material compositions. The Raman shifts and relative intensities of all Raman bands of the material allow identifying the material. The individual band changes and shifts which are seen as narrow, or broad can be varied with the intensity of the light. These changes can reveal information about the stresses in the sample and variation in crystallinity. The amount of material and its composition can also be identified, the variations in spectra with the position of the samples also reveal the changes in the material’s homogeneity. Advantages and disadvantages The advantages of Raman spectroscopy include its strength in specifying the chemicals in the materials which is a chemical fingerprint technique. There is no need for sample preparation and it is a non-destructive technique. The Raman spectra are acquired within a few seconds decreasing the processing time. The disadvantages of Raman spectroscopy include that it can not be used in analyzing metals and alloys, and in most cases, it is not quantitative regarding the composition. The Raman effect is weak and the detection needs a very sensitive and highly optimized instrument. The fluorescence of impurities or of the sample itself can hide the Raman spectrum. Reference [1] http://www.snlabs.com/raman-spectroscopy.html [2] Downes, A. and Elfick, A., 2010. Raman spectroscopy and related techniques in biomedicine. Sensors, 10(3), pp.1871-1889. [3] https://www.edinst.com/blog/what-is-raman-spectroscopy/ [4] https://www.sas.upenn.edu/~crulli/TheRamanSpectrophotometer.html