ALBUM: Organisationsform narrativer Koharenz - koharenz
Die Länge, über die zwei Wellenzüge kohärent sind, bezeichnet man als Kohärenzlänge. Genau genommen ist natürlich jedes Licht über seine Kohärenzlänge zeitlich kohärent. Beobachtbare Interferenzerscheinungen gibt es aber nur, wenn die Kohärenzlänge groß genug ist. Streng monochromatisches Licht hat eine unendlich große Kohärenzlänge, das von einem Atom ausgesandte Licht eine in der Größenordnung von 1 m, gewöhnliches Lampenlicht von nur etwa 100 μm.
I would be interested in getting the response from an objective manufacturer. Here is my take, which is slightly different than @Hazen_Babcock.
Zwei Wellenzüge, die untereinander eine feste Phasenbeziehung haben, nennt man kohärent. (Es ist nicht notwendig, dass alle dieselbe Phase haben – nur der Unterschied in der Phase darf sich nicht ändern.) Eine solche feste Phasenbeziehung ist notwendig, will man Interferenzerscheinungen beobachten. Man unterscheidet räumliche Kohärenz und zeitliche Kohärenz. Zeitliche Kohärenz bedeutet folgendes: Stellt man sich neben die – aus mehreren einzelnen Wellenzügen bestehende – Welle und lässt sie an sich vorbeiziehen, ändern sich die Phasenbeziehungen zweier Wellenzüge während des Vorbeilaufens nicht, bleiben also in Ausbreitungsrichtung der Welle unverändert. Räumliche Kohärenz bedeutet: Stellt man sich in ein Bezugssystem, das mit der Welle verbunden ist (sich also mit ihr fortbewegt und entsprechend relativ zu ihr in Ruhe ist), und schaut senkrecht zur Welle, ändern sich die Phasenverschiebungen zwischen zwei Wellenzügen in dieser Richtung (senkrecht zur Ausbreitungsrichtung) nicht. (Wir denken jetzt einmal nicht darüber nach, dass es für Licht kein Bezugssystem gibt, das relativ zur Welle in Ruhe ist …)
Assume a setup with an oil immersion high NA objective with NA = 1.4, n2 = 1.5 and a biological sample with n1 = 1.3 in transillumination with n0 = 1.0 (and NA_ill = 1.0)
Higher NA means higher collection angle by definition. The amount of light collected from an isotropic emitter is proportional to NA^2 (e.g. from an ensemble of randomly oriented fluorophores in fluorescence).
Licht einer einzigen Frequenz bildet einen unendlich langen Wellenzug. Solches Licht nennt man monochromatisch – da „eine Frequenz“ gleichbedeutend ist mit „eine Farbe“. Stellt man sich neben eine monochromatische Welle, die aus mehreren Wellenzügen besteht, werden sich die Phasenbeziehungen zwischen all diesen Wellenzügen nicht ändern. Da alle dieselbe Frequenz haben, kommt es zu keinen Verschiebungen zwischen ihnen und da sie unendlich lang sind, tritt auch der Fall nicht auf, dass nachfolgende Wellen eine andere Phase haben und dadurch einen „Bruch“ in der Phasenbeziehung auslösen. Monochromatisches Licht ist also zeitlich kohärent (hat eine unendliche Kohärenzlänge). Stellt man sich in Abbildung 3 beispielsweise an den mit 2 bezeichneten Ort und sieht den Wellen beim Vorbeiziehen zu, wird während der ganzen Zeit, in der der unendliche lange Wellenzug vorbeizieht, die Phasenverschiebung zwischen dem untersten und dem obersten Wellenzug eine knappe Wellenlänge betragen. Die Wellenzüge haben also längs ihrer Ausbreitungsrichtung eine feste Phasenverschiebung – und zwar aufgrund des unendlich langen Wellenzuges „auf immer und ewig“ (Abbildung 3b).
Yes higher NA can collect more light, but here there is no more incoming light to collect; if you are using other samples ( n1 ) this would be different.
Laser kohärenzwikipedia
I have a very basic question about objective lenses with NA larger than ~1.4: can for instance a 1.49 NA lens gather more light than a 1.4 (1.33 to 1.38) NA lens from a biological sample? To me it seems that this larger area only participate in especial illumination method like TIRF, while no more light from a sample is possible to be observed through these zone, regardless of the NA of lens (except for SAF ring and very few hundreds of nm depth of sample). In general, I am not sure how they can gather more light and generate brighter or higher resolution images; can they? Can they have better resolving power based on their higher NA for example when they are used in trans-illumination, side-illumination (or prism-based TIRF) light-sheet illumination? Also, what is their critical role (if any) in super resolution microscopy such as PALM/STORM? My main concern is that these extra NA may compromise image quality and thus the resolution to some extent. (Olympus 1.7NA) I am sorry if my question looks very basic and stupid.
Nice question. An NA higher than the refractive index of your medium will not collect more propagated light. However as you mentioned a NA>n will allow for TIRF/Evanescent wave propagation from your side of the sample, corresponding to high angle propagated light on the imaging and illumination side.
Lasercoherent light
Basler AG · Products Next. Products. Back; Products · Cameras Next. Back; All Cameras · All Cameras ... Basler ace 2 area scan camera. The ace 2 is ...
Worked at SETI Institute. . Studied at EPL Lausanne. . Went to Gymnasium Lausanne. . See more about Edmond. . Photos. Edmond Grin profile picture.
Recall that NA = RI*sin(α), so NA < medium refractive index… unless you figure out how to collect light with more than 90° half-angle. The Olympus 1.7 NA uses a special coverslip and special immersion oil with RI > 1.7. The medium with refractive index called out in this equation is the medium the objective is designed for (i.e. the immersion medium for oil objectives).
Fiber Optic Cable: 13 Products Found. Offering enhanced speed, bandwidth and reliability with minimal interference or data loss over long ...
Was istKohärenz
1.5-25mm Mechanical Iris Aperture Diaphragm Microscope Camera Condenser Parts ; People want this. 14 people are watching this. ; This one's trending. 15 have ...
I have asked this issue from Nikon and Olympus, they helped a lot, but I still need more clear answer and no one suggested a side by side test (although I believe that side by side comparison would not be very accurate). I think the problem is that I am talking about biological samples (which I am sure that most of us working with them). Any objective lens can only observe the lights that come out of the sample. The sample medium has RI about n1=1.38, so even an objective lens can gather all 180 degree of emission light (180 degree inside the sample) we can put at most 1.38 on the other side of Snell’s law to calculate the maximum angle of gathering light: 1.38 = n2sin(a)*. Please note that (a) gives us the maximum refraction angle of light from sample to cover slip and oil (except the evanescent field and SAF) which is about 65 degree for normal oil (1.52) and of course is equal to critical angle that we use in TIRF. see So it seems no matter what lens and what oil you are using, from a biological sample you cannot gather light from larger angle than critical angle. Yes higher NA can collect more light, but here there is no more incoming light to collect; if you are using other samples (n1) this would be different. However, these lenses are usually used for TIRF illumination or at least short WD imaging, so no one can neglect SAF. This is what I think at the moment; am I right?
4-Ports 10/100/1000M POE waterproof box Ethernet Switch Features Meet IEEE 802.3, IEEE 802.3u and IEEE 802.3ab standards 4-16 10 / 100/1000Mbps and ...
I don’t think having a higher NA will degrade your imaging, but it is possible that on the manufacturer side, focusing on achieving higher NA will yield a tradeoff with something such as planeity and field of view size. This follows what @DanMetcalf mentioned.
Key Takeaways · Advantages of Aspheric Lenses include reduced aberration and improved peripheral vision compared to spherical lenses, leading to clearer and ...
The middle medium with n1=1.3 can be skipped in this theoretical consideration because it only creates a parallel ray offset according to geometrical optics and refraction. [ sin(α1) = 1.0 * sin(α0)/n1 = 1/n1 at α0=90 => sin(α2) = n1 * sin(α1) / n2 = n1/n1/n2 = 1/n2 ]
202468 — von 21:00 bis 22:00 Uhr beim Harten Abend von Kultur am Rande e.V. im QUAX. „Wenn das Leben Dir so nahe kommt, dass es dich packt – mit ...
Connected an A.C. adapter to my boyfriend's battery-eating elliptical trainer = I feel like hero.
First of all, welcome to the Microforum, and thank you for your reply. Of course I am considering some applications such as SMLM, but this is a general question about the capability of objective with higher than 1.35-1,4 NA. You are right, but I think using low magnification objective is completely different story. By the way, I am not sure someone uses that expensive 25X water immersion without especial need to long working distance.
Also known as anti-glare or AR coatings, these are special coatings that are designed to decrease the amount of reflective light in lenses.
At this point a strange effect occurs: as the law of light propagation work both ways… you can also collect evanescent light from your sample at such high NA. This is named super critical angle (fluroescence) emission or SAF. In practice this means that fluorophores close to the coverslip will yield more light, but not much will change apart from this.
Um diese Tantiemen gerecht verteilen zu können, muss die VG Wort wissen, wie oft die jeweiligen Texte gelesen werden. Diese Zugriffszahlen zu ermitteln, ist Zweck des o.g. Cookies. Personenbezogene Daten werden dabei nicht erfasst. Ohne dieses Cookie ist es mir nicht möglich, die mir gesetzlich zustehende Vergütung bei der VG Wort zu beantragen und zu erhalten.
There are also really high NA lenses, like 1.57 100x lenses*. (sorry I read over the olympys 1.7 NA lens mentioned in the first post) I think those can be used to do TIRF in fixed samples, but do require a different material coverslip and hi refractive index oil. I wonder if there are any publication of using these type of lens in SMLM and if there is any benefit of the increased resolution.
What fabulous answers! As kind of mentioned in the other answers, sample prep and RI of mounting and sample are important, and the WD of super high NA objectives do limit to 100nm or less typically. One thing I know the reps (particularly my local Olympus reps, really honest), always remind me of, in addition to the importance of sample prep, is that to harness maximally achievable NA of any objective, you need to fill the back aperture adequately, e.g. just throwing a higher NA modern objective lens onto an older system won’t necessarily give you better performance if you’re starved for photons getting to the sample, I’ve experienced this myself by comparing my current Olympus 40X 1.30 oil to their new XApo 1.40 oil, on a middle aged Yokogawa spinning disk. Great discussion of this topic!
ZeitlicheKohärenz
Some of the high NA TIRF lenses you mention have the disadvantage of not being plan so there is roll off towards the edges of the FOV, but that may not be an issue depending on your desired FOV/detector etc. And of course pixel size is important in the trade-off of resolution and sensitivity/SNR. For PALM/STORM this is usually done with 100X TIRF objectives. Nikon have specialised SR versions with better PSF’s. For the best localisation precisions it’s important to not have aberrations and of course to collect the maximum number of photons per pixel. Depending on the system this is usually a pixel size of 100-160 nm. In this context TIRF illumination helps improve the SNR but my understanding is the this is due to having less out of focus light from the sample rather than improving the light gathering power of the objective. But perhaps someone with a more of an optics background than me can say more on that.
Das von einer gewöhnlichen Lichtquelle ausgesandte Licht setzt sich aus vielen einzelnen Wellenzügen zusammen. Bei natürlichen Lichtquellen sind diese Wellenzüge nicht kohärent – natürlich ausgestrahltes Licht ist inkohärent. Das versteht man, wenn man sich überlegt, dass die eigentlichen Lichtquellen Atome sind. Die Ausstrahlung eines einzelnen Wellenzuges bei einem Emissionsvorgang dauert etwa 0,000 000 000 1 s, daraus ergibt sich eine theoretische Länge eines solchen ausgesandten Wellenzuges von etwa 3 cm. Betrachten wir nun ein solches Atom, das einen Wellenzug aussendet, und stellen uns neben den Lichtweg. Der erste Wellenzug zieht an uns vorbei. Irgendwann sendet das Atom den nächsten Wellenzug aus, und zwar zu einer zufälligen späteren Zeit. Die Berge und Täler dieses zweiten Wellenzuges stehen zu denen des ersten in einer zwar festen, aber völlig willkürlichen Phasenbeziehung. Dasselbe gilt für den dritten, vierten, fünften … Wellenzug. Zwischen den einzelnen vom Atom ausgesandten Wellenzügen ist daher keine feste Phasenbeziehung feststellbar – von Wellenzug zu Wellenzug wechselt sie ständig. Eine feste Phasenbeziehung kann nur zwischen zwei einzelnen Wellenzügen auftreten, also maximal über die Länge eines solchen Wellenzuges. Je kürzer diese sind, desto kürzer die Strecke, über die es zu Kohärenz kommen kann (die Kohärenzlänge). Selbst wenn die Wellenzüge sehr lang sind, kommt noch hinzu, dass eine gewöhnliche Lichtquelle Licht verschiedener Wellenlängen aussendet. Zwischen zwei Wellenzügen unterschiedlicher Wellenlänge ändert sich die Phasendifferenz entlang der Wellenzüge ebenfalls (Abbildung 2b). (Kurz kann ein Wellenzug auch nur dann sein, wenn er aus Wellen vieler Frequenzen zusammengesetzt ist. Je länger er ist, desto weniger Frequenzen sind beteiligt, desto reiner ist seine Farbe.) Schließlich sendet eine gewöhnliche Taschenlampe auch kein paralleles Licht aus, sondern in alle möglichen Richtungen. Eine gewöhnliche Taschenlampe (Abbildung 1) sendet also inkohärentes Licht aus. Sie stellt eine ausgedehnte Lichtquelle dar, deren Atome kurze Wellenzüge in alle möglichen Richtungen aussenden. Weder entlang der Ausbreitungsrichtung (Pfeil) noch senkrecht zu ihr (gestrichelte Linie) finden sich feste Phasenbeziehungen zwischen den Wellen.
Betrachten wir eine Taschenlampe, die drei Atome enthält. Jedes dieser drei Atome sendet kurze Wellenzüge aus, jedes in einer anderen Wellenlänge und jedes zu zufällig verteilten Zeiten. Wichtig ist, dass die Lampe nur nach vorn strahlen soll, die Wellenzüge sind also alle parallel zueinander. (Was es bedeutet, wenn sie nicht parallel sind, siehe weiter unten.) Stellt man sich an den Strahl der Taschenlampe (Abbildung 2a) an den blauen Punkt, laufen verschiedenste Kombinationen aus Wellenzügen an einem vorbei. Das erste Minimum des untersten wählen wir als Referenz (rote Punkte). Die Lage der ersten Minima der Wellenzüge des mittleren und oberen Atoms gibt dann die Phasenverschiebungen dieser Wellenzüge zum unteren wieder (grüne Punkte). In Abbildung 2a sind nun drei Zeitpunkte skizziert. Da die Wellen sich nach rechts ausbreiten, sieht man zuerst den mit 1 gekennzeichneten Zustand, zuletzt den mit 3 gekennzeichneten. Man sieht – die Phasenverschiebungen zwischen den Wellenzügen der drei Atome wechseln (aus der Sicht des blauen Punktes) ständig. Das Licht dieser Taschenlampe ist also nicht zeitlich kohärent. Setzt man sich aber auf einen der Wellenzüge (also beispielsweise auf einen der roten Punkte), bewegt sich mit ihm mit und schaut senkrecht zur Ausbreitung, sieht man immer dieselbe Phasenverschiebung zu den anderen beiden Wellenzügen. Innerhalb einer einzigen solchen Gruppierung von Wellenzügen bleibt die Phasenverschiebung während der Lichtausbreitung also erhalten – parallele Wellen sind räumlich kohärent.
RäumlicheKohärenz
Is this a theoretical question or you have an application in mind? A few other considerations. If you want maximum brightness then aim for low magnification with high NA. Something like the Nikon 25X 1.1NA water immersion is very good for this or a 40X oil immersion. This MicroscopyU article explains more https://www.microscopyu.com/microscopy-basics/image-brightness. Consider refractive index matching to your sample. It may be you are better moving away from oil immersion and to water immersion or silicone immersion (Nikon and Olympus have some very nice options) particularly if you are imaging away from the coverslip. These lenses also have correction collars which correct any spherical aberration.
Different objective lenses have different corrections depending on the target application. Spherical aberrations are the most common type of imaging aberration and occur as you image deeper into a sample that isn’t index-matched with the immersion medium (hence the popularity of silicone oil objectives where the immersion substance better matches the RI of many samples than either water or conventional oil does). Some objective lenses – depending on intended use case and sensitivity to spherical aberration – have correction collars so the user can adjust internal compensation. Some objective lenses have better flat field (plan) correction than others. Some objectives have better chromatic corrections than others (achromat = corrected for 2 colors, fluor = 3 colors, apo = 4 colors). TIRF objectives are usually well-corrected for flatness and chromatically, but multi-photon objectives often do not perform particularly well in either of these categories…
We have one of those but Ive never tested it, and haven’t found a specific usecase for it. If anybody in this thread has some nice examples for use of this lens, it would be appreciated if you could share.
Zwar ist es erlaubt, von im Internet publizierten Texten private Kopien zu machen, dennoch steht dem Autor/der Autorin für diese Kopien gesetzlich eine Vergütung zu. Es ist aber natürlich nicht möglich, von jedem/jeder Kopierenden diese Vergütung einzufordern. Daher zahlen bspw. Hersteller von Druckern, Computern u. ä. Gebühren an die VG (= Verwertungsgesellschaft) Wort. Diese zahlt dann ihrerseits von diesen Gebühren Tantiemen an die Autoren und Autorinnen. Sie als Leser meiner Internetseite zahlen natürlich nichts!
Zeitliche Kohärenz wird also durch Monochromasie erzeugt, räumliche Kohärenz entsteht, wenn die Wellenzüge alle parallel sind. Parallele Wellen haben ebene Wellenfronten – das lässt sich leicht einsehen, wenn man die Maxima der Laserlichtwellen (Abbildung 4) miteinander verbindet und zum Vergleich dazu die Maxima der Lichtwellen der „monochromatischen Taschenlampe“ (Abbildung 3). Hier krümmen sich die Wellenfronten. Nur über kurze Abstände quer zum Strahl kann man die Wellenfront als annähernd eben betrachten und die Wellen entsprechend als parallel. Je länger die Strecke (senkrecht zum Strahl) ist, über die die Wellen genügend parallel sind, desto größer ist die räumliche Kohärenz. Abbildung 4 schließlich zeigt Wellen, die sowohl zeitlich als auch räumlich kohärent sind: monochromatisches und paralleles Licht, wie es zum Beispiel ein Laser aussendet. Sowohl in Ausbreitungsrichtung als auch senkrecht dazu gibt es feste Phasenbeziehungen. Deshalb lassen sich mit Laserlicht die besten Interferenzerscheinungen erzeugen. (Zwar erzeugt auch ein Laser keine wirklich unendlich langen Wellenzüge, aber sie sind mit Längen von einigen Kilometern hinreichend „unendlich lang“.)
For resolution and image quality, I want to mention that at least Olympus confirmed that their 1.5 NA lens has much better image quality than 1.7NA in terms of aberration correction.
Well I believe that you are correct, and that the higher NA objectives don’t collect more light. According to this web-page (Leica) an objective has a typical maximum collection angle of about 144 degrees. Doing the math for an oil immersion objective gives an NA of 1.44 as the maximum assuming 1.515 for the refractive index. As you say, you will get additional collection if the dye is within a few hundred nanometers of the interface because it will preferentially emit into the higher index media (SAF), but I think you are asking about ‘deep’ in the sample?
Hi Edalat, My take is same as you here “No, the effective NA can’t be higher than that of the sample media”, unless you are imaging a few hundreds of nm near the coverslip surface.
This video may be inappropriate for some users. Sign in. Gastroscopy: What is a gastroscopy procedure. 1.4M views · 4 years ago ...more ...
But what you will find in practice is that this setup will deliver brighter images with higher resolution compared to an air objective with NA = 1.0 and similar magnification.
Räumliche Kohärenz kann man erreichen, indem man eine annähernd punktförmige Lichtquelle verwendet. Punktförmige Lichtquellen senden kugelförmige Lichtwellen aus. Je größer die Entfernung zur Lichtquelle ist, desto flacher ist die Krümmung der Wellenfront. In genügend großer Entfernung kann man die Wellenfront als eben und das Licht als parallel betrachten – man kann zeigen, dass dann die Phasenunterschiede zwischen den Wellen verschiedener Atome der Lichtquelle keine Rolle mehr spielen. (Man muss also entweder eine sehr kleine Lichquelle verwenden oder entsprechend weit von ihr entfernt sein.) Schneidet man aus diesem parallelen Wellenbündel zwei enge Wellenbündel aus, sind diese (genügend) räumlich kohärent. Benutzt man nun noch eine monochromatische Lichtquelle, hat man gute Voraussetzungen geschaffen, um Interferenzeffekte beobachten zu können. Ganz so ideal müssen die Bedingungen zum Glück nicht immer sein – so ist selbst beim Mondlicht die Kohärenzbedingung gut genug erfüllt, um die Koronen um den Mond zu erzeugen.
KohärenzPsychologie
However I think you can get higher resolution, even if you don’t collect more light, because the wavelength of the light will be shorter in the high index media that is used for example by an Olympus 1.7NA. Could this be helpful for PALM/STORM? I think that would depend on what you want to image. I’d say yes if your imaging a sample that is very thin, but maybe no if the sample is thick and you want to image a few microns deep. The distortions due to the refractive index differences are likely to negate any of the gains from the higher NA.
Kohärenzgefühl
As a final note, I would say to a certain extent you have to try it out yourself to see if a particular objective works in your application. As Hazen said, sometimes you can arrange to test out objectives.
Essenzielle Cookies benötigen keine aktive Zustimmung des Nutzers, aber natürlich können Sie generell in Ihrem Browser die Annahme von Cookies ausschalten.
Senkrecht zur Ausbreitungsrichtung kann es dagegen durchaus zu Änderungen der Phasenbeziehung kommen, wenn die Wellenzüge beispielsweise in unterschiedlichen Winkeln ausgesandt werden – wie es in dem sich aufweitenden Strahl einer Taschenlampe der Fall ist. Alle Wellenzüge verlassen die Lampe zum Zeitpunkt 1 mit derselben Phase (hier: Nulldurchgang vom Maximum zum Minimum), gekennzeichnet durch die roten Punkte in Abbildung 3b. Setzen wir uns zum Zeitpunkt 1 auf die Welle und zwar auf den roten Punkt der untersten Welle und fliegen mit der Welle mit. Zum Zeitpunkt 2 haben sich alle Wellenzüge um die Entfernung von zwei Wellenlängen nach rechts bewegt (und wir mit). Weil die beiden oberen Wellen sich aber in einem Winkel zum unteren ausbreiten, befinden sich deren entsprechende Nulldurchgänge nicht mehr auf einer Höhe mit dem der unteren Welle (blaue Punkte), sie hinken hinterher (um im Bild zu bleiben: Wir müssen nun nicht mehr nach links gucken, um sie zu sehen, sondern uns nach hinten umdrehen): Eine Phasendifferenz ist entstanden. Diese Phasendifferenz wird mit weiterem Fortschreiten der Welle immer größer (grüne Punkte). Räumliche Kohärenz herrscht hier also nicht (oder bestenfalls nur über Ausschnitte des Strahls, die so eng sind, dass die Aufweitung vernachlässigbar ist).
To your question of whether having more NA will compromise image quality, I would say “no” but also be aware that objectives have been designed to perform different tasks and use caution when trying to repurpose them. For example, I am aware of several objectives designed for multi-photon imaging where the PSF size on a camera is significantly larger than the NA would predict. For multi-photon imaging this is acceptable, but if you use on a lightsheet system beware. So indeed it is possible for lenses to have intrinsic “underperforming” resolving power relative to the NA-based theoretical limit. I am not aware of any TIRF lenses with this problem. It is also possible for objectives to get damaged or poorly assembled in a way that they don’t achieve anywhere near the theoretical resolving performance.
Abbe has explained the microscopic image formation based on diffraction occurring due to object structures. According his explanation “…it is the light-gathering power of the objective, which will affect the brightness of the image and its resolution.” Higher NA objectives will gather higher diffraction orders which are emerging at higher angles. The resolution and brightness of an image are increasing with the number of diffraction contributing to image formation. A high NA oil immersion lens will gather diffraction orders in angle directions which are not contained in the illumination.
Objective lenses that have NA/RI ratio anywhere near the maximum of 1.0 (i.e. large collection angles) usually have very short working distance because otherwise they would have a huge front aperture. TIRF lenses fall into that category. I believe than a NA 1.49 TIRF (standard oil) objective really does have a arcsin(1.49/1.5128) ~= 80 degree collection angle, but it has a tiny working distance (BTW the working distance specified is the free working distance besides the coverslip, if one is specified). For TIRF you are imaging right at the coverslip surface anyway so you don’t need more than the 10s of micron WD anyway.
Objective lenses also have transmission curves which tell you how much light gets through. As I understand the main loss mechanism is residual reflections of the AR coatings on internal lens elements (which might be e.g. 1%/surface). It is conceivable that an objective with lower NA but higher transmission might win the competition for collecting the most photons from an identical sample.