1μm : Thermal Lensing Compensation(TLC) Optics - thermal lensing
It was easy to put together pages and when I was done, I could just click and have the page automatically created in HubSpot.
Opticallens
We built our old site using a template, and it left a lot to be desired. With SprocketRocket, we can go page by page and get the exact flow of content we need.
The most important parameter of a microscope objective is the numerical aperture (NA). NA measures the microscope objective’s ability to gather light and determines the resolution of a microscopy system.
Cylindricallens
Objective lenses are used to magnify an image. In addition to numerical aperture, magnification is also an important parameter. The objective magnification typically ranges from 4X to 100X. As the image sensor size or eye observed area is fixed, the field of view of a microscopy system changes with the magnification of the objective lens. Typically a lower magnification objective lens will have a larger field of view and lower resolution, and a higher magnification objective lens will have a smaller field of view and higher resolution. The diameter of the FOV can be calculated by using the following formula: FOV= FN/Mag The field number (FN) in microscopy is defined as the diameter of the area in the image plane that can be observed through the eyepiece or image sensor.
Fresnel Technologies, Inc. specializes in the design and manufacturing of molded plastic Fresnel lenses, molded polymer optics in general, and infrared-transmitting optical materials. We offer design assistance, diamond machining, prototyping, tooling, and production. Stock or custom, we’re your optics partner.
Download the brochure to learn more about the development of our Fresnel lenses, lens specifications, and details on how to order the lens you need.
fresnel lens中文
A dry objective is designed to work with the air medium between the specimen and the objective lens, while an immersion objective requires a liquid medium to occupy the space between the object and the front element of the objective for enabling a high NA and high resolution. Figure 4 shows the oil immersion objective, which can collect more light (i.e., have a higher NA) compared to a dry objective.
Usually the working distance (WD) refers the distance from the front lens element of the objective to the observed object when the object is in sharp focus. Objective lenses with long working distance are needed for many scientific research applications such as atom trapping and analyzing fluid samples that require putting an object in a chamber. The resolution of a microscopy system can be significantly affected if the observed object is not placed on the designed object plane, especially for an objective with high NA.
Fresnellens
Fresnel Technologies makes a variety of stock Fresnel and related optical components to meet your needs. We can also design and construct custom Fresnel lenses and polymer optics as requested. Our Fresnel items fall into a number of categories, but they are all made from polymer materials. Generally, our engineers design these components with thicknesses under 1/4" (6 mm) with a stepped surface.
Fresnel light
The template is really nice and offers quite a large set of options. It's beautiful and the coding is done quickly and seamlessly. Thank you!
Fresnel Effect
Infinity-corrected objectives are ideal for research-grade biomedical industrial applications especially when additional components (such as filters, dichroic mirrors, polarizers) are needed in the microscopy system. Adding optical plate components in the infinity space (shown in the Fig.2 labelled as “Parallel Optical Path) between the infinity-corrected objective and tube lens will not introduce spherical aberration, or change the objective’s working distance.
Lenticularlens
Many objective lenses are corrected for infinite conjugate distance, while others are designed for finite conjugate distance applications. Compared to infinite conjugate objectives which need a secondary lens (also called tube lens), a finite conjugate objective can generate an image of a specimen by itself. A finite conjugate objective, as shown in Figure 1, is a good, economical choice for a simple microscopy system.
Room 609, 6/F, Global Gateway Tower, No.63 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong +852-54993705 info@shanghai-optics.com
NA is commonly expressed as NA = n × sinθa where θa is the maximum 1/2 acceptance angle of the objective, and n is the index of refraction of the immersion medium. The limit of resolution of a microscope objective refers to its ability to distinguish two closely spaced Airy disks. Resolution (r) = λ/(2NA) Where r is resolution (the smallest resolvable distance between two objects), and λ is the imaging wavelength. The higher the NA, the better the objective resolution.
Objective lenses are used in microscopy systems for a range of scientific research, industrial, and general lab applications. A microscope objective is typically composed of multiple lens elements and located closest to the object. There are so many types of microscope objectives available, choosing the right objective can help you produce good quality images at a reasonable cost. When choosing a microscope objective, we will need to consider a number of factors including conjugate distance, numerical aperture (NA), magnification, working distance, immersion medium, cover glass thickness, and optical aberration corrections. In this article, we will discuss how to choose the right microscope objective.
Fresnel screen
The optical aberration corrections determine the optical performance of an objective lens. According to the degrees of the aberration corrections, objective lenses are typically classified into five basic types: Achromat, Plan Achromat, Plan Fluorite (Plan Semi-Apochromat), Plan Apochromat, and Super Apochromat. Choosing an objective with a proper aberration correction level will help you build a microscopy system at a reasonable cost.
Our team of optical experts can help you bring your project to life with custom or off-the-shelf designs. We’re here to help you find the right solution.
SO offers a wide range of objective designs, which provide various degrees of optical aberration corrections for supporting different needs, such as achromatic objectives (the cheaper objectives) for laboratory microscope applications and long working distance apochromats (expensive objectives) for biological and scientific research applications. We can help you choose or design a properly corrected objective lens for meeting your application requirements.
Today's modern computer-controlled machining methods can be used to cut the surface of each cone precisely to bring all paraxial rays into focus at exactly the same point, avoiding spherical aberration. Better still, newer optical manufacturing methods can be used to cut each refracting surface in the correct aspheric contour (rather than as a conical approximation to this contour), thus avoiding even the width of the groove (typically 0.1 to 1 mm) as a limit to the sharpness of the focus. Even though each groove or facet brings light precisely to a focus, the breaking up the wavefront by the discontinuous surface of a Fresnel lens degrades the visible image quality. Except in certain situations, Fresnel lenses are usually not recommended for imaging applications in the visible light region of the spectrum.
Fresnel Technologies, Inc. specializes in the design and manufacturing of molded plastic Fresnel lenses, molded polymer optics in general, and infrared-transmitting optical materials. We offer design assistance, diamond machining, prototyping, tooling, and production. Stock or custom, we’re your optics partner.
The most common immersion media are air, water, oil, and silicone. Choosing the appropriate objective designed for your immersion medium will result in higher resolution images.
Alpha Industrial Park, Tu Thon Village, Ly Thuong Kiet Commune, Yen My District, Hung Yen Province Vietnam 17721 +84 221-730-8668 rfqvn@shanghai-optics.com
Fresnel Technologies, Inc. specializes in the design and manufacturing of molded plastic Fresnel lenses, molded polymer optics in general, and infrared-transmitting optical materials. We offer design assistance, diamond machining, prototyping, tooling, and production. Stock or custom, we’re your optics partner.