Offensichtlich hängt die Lichtgeschwindigkeit – genauer: die Phasengeschwindigkeit des Lichts – in Medien von deren Materialeigenschaften ab. Diese können im Brechungsindex n {\displaystyle n} zusammengefasst werden. Im Allgemeinen ist er frequenzabhängig, was als Dispersion bezeichnet wird. Darauf beruht unter anderem die Fähigkeit eines Prismas, das Licht in seine spektralen Anteile zu zerlegen. Kurzwelliges blaues Licht (< 450 nm) wird bei normaler Dispersion stärker gebrochen als langwelliges rotes Licht (> 600 nm).

Der Text ist unter der Lizenz „Creative-Commons Namensnennung – Weitergabe unter gleichen Bedingungen“ verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den Nutzungsbedingungen und der Datenschutzrichtlinie einverstanden.

Sowohl bei den Stäbchen als auch bei den Zapfen beruht der Sehvorgang auf der Absorption von Photonen durch das Sehpigment (im Falle der Stäbchen: Rhodopsin). Der Ligand Retinal macht dabei eine Isomerisierung durch, die dazu führt, dass das Rhodopsin zerfällt und die Signalkaskade der Phototransduktion in Gang setzt. Die dadurch verursachte Hyperpolarisation der Zellmembran der Stäbchen und Zapfen bewirkt ein elektrisches Signal, das an die nachgeschalteten Nervenzellen weitergegeben wird.

Eine Sonderstellung unter den Lichtquellen nimmt der Laser ein. Laserlicht ist nahezu monochromatisch (es besteht fast nur aus einer Wellenlänge), mehr oder weniger kohärent (es besteht eine feste Phasenbeziehung zwischen mehreren Wellenzügen) und oft polarisiert.

Historisch nimmt die Wellenoptik von Huygens und Fresnel schon eine wesentliche Erkenntnis der Elektrodynamik vorweg: Lichtwellen sind elektromagnetische Wellen.

Galileo Galilei versuchte als einer der ersten, die Ausbreitungsgeschwindigkeit des Lichts ernsthaft zu messen, jedoch ohne Erfolg. Dafür waren die ihm zur Verfügung stehenden Mittel viel zu grob. Dies gelang erst Ole Rømer anhand von Beobachtungsdaten der Jupitermonde 1675, insbesondere des Mondes Io. Zwar betrug die Abweichung seines Messwerts (ca. 2,1 · 108 m/s) vom tatsächlichen Wert rund 30 %, die eigentliche Leistung Rømers bestand jedoch darin, nachzuweisen, dass sich das Licht mit endlicher Geschwindigkeit ausbreitet.[7] Rømers Messwert wurde im Laufe der folgenden 200 Jahre durch immer raffiniertere Verfahren (vor allem durch Hippolyte Fizeau und Léon Foucault) mehr und mehr präzisiert. Die Natur des Lichts blieb jedoch weiter ungeklärt. Im 17. Jahrhundert versuchte Isaac Newton mit seiner Korpuskeltheorie, die Ausbreitung des Lichts durch die Bewegung von kleinen Teilchen zu erklären. Damit konnte man zwar die Reflexion verstehen, nicht jedoch manche andere optische Phänomene, wie die Beugung, bei der es sich eindeutig um ein Wellenphänomen handelt. Zur gleichen Zeit begründeten Christiaan Huygens und andere die Wellentheorie des Lichts,[8] die sich aber erst Anfang des 19. Jahrhunderts nach den Doppelspalt­experimenten von Thomas Young zunehmend durchsetzte.[9]

Das Internationale Jahr des Lichts war 2015 von der UNESCO gefeiert worden. Im November 2017 rief die Organisation den Internationalen Tag des Lichts[21] (englisch International Day of Light[22]) aus, der seit 2018 jährlich am 16. Mai begangen wird. Ziel des Aktionstages ist die Würdigung des Lichts und seiner Rolle in Wissenschaft, Kultur und Kunst, Bildung und nachhaltiger Entwicklung sowie in so unterschiedlichen Bereichen wie Medizin, Kommunikation und Energie. Dadurch, dass das Thema Licht so breit gefächert ist, wird es verschiedenen Bereichen der Gesellschaft weltweit ermöglicht sich an Aktivitäten zu beteiligen und so zum Erreichen der Ziele der UNESCO – Bildung, Gleichheit und Frieden – beitragen.

Prinzipiell unterscheidet man zwischen thermischen und nicht-thermischen Strahlern. Erstere beziehen die Energie für die Strahlungsemission aus der thermischen Bewegung ihrer Teilchen. Beispiele sind Kerzenflammen, glühende Körper (Glühdraht einer Glühlampe) und die Sonne. Das Spektrum eines thermischen Strahlers ist kontinuierlich, d. h., es treten alle Wellenlängen auf, wobei die spektralen Anteile nach dem Planckschen Strahlungsgesetz ausschließlich von der Temperatur abhängen, jedoch, abgesehen vom spektralen Emissionsgrad, nicht vom Material des Strahlers.

Die genauen Winkel δ i {\displaystyle \delta _{i}} können durch die Brechungsindizes n i {\displaystyle n_{i}} der beteiligten Medien berechnet werden:

Bei organischen Farbstoffen können delokalisierte π-Elektronen durch Frequenzen im sichtbaren Bereich auf ein höheres Niveau gehoben werden. Dadurch werden je nach Molekül bestimmte Wellenlängen absorbiert.

Von spiegelnden Oberflächen (blankes Metall, Wasseroberfläche) wird Licht nach dem Reflexionsgesetz reflektiert. Der einfallende und der ausfallende Strahl sowie das Lot auf der reflektierenden Fläche liegen in einer Ebene. Einfallswinkel und Ausfallswinkel sind einander gleich. Das Verhältnis der reflektierten Lichtintensität zur einfallenden Lichtintensität wird als Reflexionsgrad bezeichnet und ist material- und wellenlängenabhängig. Der Reflexionsgrad gibt an, wie viel Prozent des auf eine Fläche fallenden Lichtstroms reflektiert werden.[16]

Die spektrale Zusammensetzung des Lichtreizes wird als Farbe wahrgenommen, wobei das menschliche Auge Licht mit Wellenlängen zwischen ca. 380 nm und 750 nm erfassen kann. Trennt man weißes Licht (durch ein Prisma) auf, so erscheinen die Wellenlängen als Farben des Regenbogens.

Licht ist eine Form der elektromagnetischen Strahlung. Im engeren Sinne sind nur die für das menschliche Auge sichtbaren Anteile des elektromagnetischen Spektrums gemeint. Die untere Grenze dieses Bereichs wird bei Wellenlängen von 360 bis 400 nm, die obere Grenze bei 760 bis 830 nm angesetzt.[1] Im weiteren Sinne werden in der Physik auch elektromagnetische Wellen kürzerer Wellenlänge (Ultraviolett oder Röntgenstrahlung) und größerer Wellenlänge (Infrarot und Terahertz-Strahlung) dazu gezählt, wobei die Internationale Beleuchtungskommission von der Verwendung der Bezeichnung Licht in diesem Kontext abrät.[2]

In der klassischen Elektrodynamik wird Licht als eine hochfrequente elektromagnetische Welle aufgefasst. Im engeren Sinne ist „Licht“ nur der für das menschliche Auge sichtbare Teil des elektromagnetischen Spektrums – das sichtbare Licht – also Wellenlängen zwischen ca. 380 und 780 nm. Dies entspricht Frequenzen von ca. 790 bis 385 THz. Es ist eine Transversalwelle, wobei die Amplitude durch den Vektor des elektrischen Feldes oder des Magnetfeldes gegeben ist. Die Ausbreitungsrichtung verläuft senkrecht dazu. Die Richtung des E → {\displaystyle {\vec {E}}} -Feld-Vektors oder B → {\displaystyle {\vec {B}}} -Feld-Vektors wird Polarisationsrichtung genannt. Bei unpolarisiertem Licht setzt sich das Strahlungsfeld aus Wellen aller Polarisationsrichtungen zusammen. Sichtbares Licht (wie alle elektromagnetischen Wellen) breitet sich im Vakuum mit der Lichtgeschwindigkeit von c = 299 792 458 m/s aus.

Mit der darauf aufbauenden elektromagnetischen Lichttheorie schienen im ausgehenden 19. Jahrhundert beinahe alle Fragen zum Licht geklärt. Allerdings ließ sich einerseits der postulierte Äther nicht nachweisen (siehe Michelson-Morley-Experiment), was letztendlich das Tor zur speziellen Relativitätstheorie aufstieß. Andererseits schien unter anderem der Photoeffekt der Wellennatur des Lichts zu widersprechen. So entstand eine radikal neue Sichtweise des Lichts, die durch die Quantenhypothese von Max Planck und Albert Einstein begründet wurde. Kernpunkt dieser Hypothese ist der Welle-Teilchen-Dualismus, der das Licht nun nicht mehr ausschließlich als Welle oder ausschließlich als Teilchen beschreibt, sondern als Quantenobjekt.[14] Als solches vereint es Eigenschaften von Welle und von Teilchen, ohne das eine oder das andere zu sein und entzieht sich somit unserer konkreten Anschauung. Daraus entstand Anfang des 20. Jahrhunderts die Quantenphysik und später die Quantenelektrodynamik, die bis heute unser Verständnis von der Natur des Lichts darstellt.[15]

Das Licht, das ins menschliche Auge fällt, wird durch den Brechapparat (bestehend aus Hornhaut, vorderer und hinterer Augenkammer, Linse und Glaskörper) auf die Netzhaut projiziert. Dort entsteht ein reelles, auf dem Kopf stehendes Bild (vergleichbar dem Vorgang in einer Fotokamera). Dadurch werden die in der Netzhaut befindlichen Fotorezeptoren (= Lichtsinneszellen) gereizt, die den Reiz in ein elektrisches Signal wandeln. Dieses Signal wird über den Sehnerv, in den die einzelnen Nervenstränge der Netzhaut münden, zum Gehirn geleitet. Dort werden die auf dem Kopf stehenden Bilder unserer Umwelt dann in Echtzeit „gerade gerückt.“

Sonymacro lens

Macro photography often entails the use of a tripod, because when you're shooting so close to your subject, the depth of field is often reduced to millimeters instead of inches or feet. To ensure sharp images, you'll want to place your DSLR on a tripod for added stability. If a tripod isn't an option, try one of the Micro-NIKKOR lenses that feature Nikon's VR (Vibration Reduction) image stabilization. These lenses allow hand held shooting with the ability to shoot at up to 4 stops slower than otherwise possible; great for achieving greater depth-of-field and sharper pictures or D-Movies.

PROIETTORE DI PROFONDITA' JUMBO FULL LED. Login per vedere i tuoi prezzi. Aggiungi al Carrello. Aggiungi alla lista desideri Aggiungi al confronto. Novità.

Image

Nikon micro lenses include a variety of AF and AF-S lenses, a DX lens, (designed specifically for use with cameras that utilize the DX format image sensor) manual focus lenses and PC-E or Perspective Control lenses, and a DX lenses.

Bestmacro lensfor insects

Fashion photography with Dixie Dixon, Visual Storytelling with Joe McNally, Wedding photography with Jerry Ghionis and Sports photography with Rod Mar

Im Gegensatz dazu haben nicht-thermische Lichtquellen kein kontinuierliches Spektrum, sondern ein Linien- oder ein Bandenspektrum. Das bedeutet, dass nur ganz bestimmte Wellenlängen abgestrahlt werden. Linienspektren treten bei Gasentladungsröhren auf, Bandenspektren bei Leuchtdioden, Polarlichtern oder Leuchtkäfern. Die Energiequellen für die Strahlung sind hier elektrischer Strom, Teilchenstrahlung oder chemische Reaktionen. Linienspektren sind oft charakteristisch für bestimmte Stoffe.

Speaking of D-Movies many Nikon DSLR cameras can record in HD or Full HD video. Just as you can use a Micro-NIKKOR lens to make eye-catching still photographs, you can also create unique D-Movies that showcase your subjects, reproduced up to life size.

Gammastrahlung | Röntgenstrahlung | Ultraviolettstrahlung | Sichtbares Licht | Infrarotstrahlung | Terahertzstrahlung | Mikrowellen | Radiowellen

Image

Dabei ist ν {\displaystyle \nu } die Frequenz des Lichts und h {\displaystyle h} das Plancksche Wirkungsquantum mit h = 6,626 070 15 ⋅ 10 − 34 Js {\displaystyle h=6{,}626\,070\,15\cdot 10^{-34}\,{\text{Js}}} .

Photo taken with a 105mm Micro-NIKKOR lens. The subject, a Praying mantis, was illuminated using Nikon's Close-up Speedlight system.

Die Tscherenkow-Strahlung entsteht durch die Bewegung von geladenen Teilchen durch ein durchsichtiges Dielektrikum, wenn die Teilchengeschwindigkeit höher als die Lichtgeschwindigkeit im Dielektrikum ist. Sie ist das Analogon zum Überschallknall und kann zum Beispiel in Schwimmbadreaktoren und Abklingbecken von Kernkraftwerken beobachtet werden.

Nikon offers two close-up Speedlight systems which are great for supplementing available light when shooting macro photographs. The R1 Wireless Close-up Speedlight System is configured for i-TTL enabled cameras that feature a built-in Commander function and R1C1 Wireless Close-up Speedlight System is configured for iTTL enabled cameras without a built-in Commander function.

LED Amber Strobe Light - With Deutsch Connector is a quality replacement part for a low price at ForkliftAccessories.com.

Sowohl für Räuber- als auch Beutetiere ist es von Vorteil, nicht gesehen zu werden. Anpassungen daran sind Tarnung und Nachtaktivität. Erstaunlicherweise haben dahingegen viele Lebewesen selbst die Fähigkeit entwickelt zu leuchten. Das bekannteste Beispiel ist der Leuchtkäfer. Man findet dieses Phänomen der Biolumineszenz aber auch bei Tiefseefischen, Leuchtkrebsen, Pilzen (Hallimasch) oder Bakterien. Der Nutzen der Biolumineszenz wird vor allem mit innerartlicher Kommunikation, der Abschreckung von Fraßfeinden und dem Anlocken von Beute erklärt.

In der Quantenphysik wird Licht nicht mehr als klassische Welle, sondern als Quantenobjekt aufgefasst. Demnach setzt sich das Licht aus einzelnen diskreten Energiequanten zusammen, den sogenannten Photonen. Ein Photon ist ein Elementarteilchen, genauer ein elementares Boson mit einer Masse von 0, das sich stets mit der Lichtgeschwindigkeit c {\displaystyle c} bewegt.

Den Aufbau von organischen Verbindungen aus Kohlenstoffdioxid bezeichnet man als Kohlenstoffdioxid-Assimilation. Organismen, die mithilfe von Licht dazu in der Lage sind, nennt man photo-autotroph. Neben den Gefäßpflanzen gehören auch Moose, Algen und einige Bakterien dazu, beispielsweise Cyanobakterien und Purpurbakterien. Alle heterotrophen Organismen sind von dieser Assimilation abhängig, weil sie ihren Energiebedarf nur aus organischen Verbindungen, die sie mit der Nahrung aufnehmen müssen, decken können.

Licht zählt als ein Umweltfaktor zu den Immissionen im Sinne des Bundes-Immissionsschutzgesetzes (BImSchG). Lichtimmissionen von Beleuchtungsanlagen können das Wohn- und Schlafbedürfnis von Menschen und Tieren erheblich stören und auch technische Prozesse behindern. Entsprechend sind in der „Licht-Richtlinie“ der Länder (in Deutschland) Maßstäbe zur Beurteilung der (Raum-)Aufhellung und der (psychologischen) Blendung festgelegt.[23] Besonders störend kann intensiv farbiges oder blinkendes Licht wirken. Zuständig sind bei Beschwerden die Umwelt- und Immissionsschutzbehörden der jeweiligen Bundesländer. Negative Auswirkungen betreffen die Verkehrssicherheit (Navigation bei Nacht, physiologische Blendung durch falsch eingestellte Scheinwerfer oder durch Flächenbeleuchtungen neben Straßen), Einflüsse auf die Tierwelt (Anziehen nachtaktiver Insekten, Störung des Vogelflugs bei Zugvögeln) und die allgemeine Aufhellung der Erdatmosphäre (Lichtverschmutzung, die astronomische Beobachtungen infolge Streuung des Lampenlichts in der Atmosphäre des Nachthimmels behindert).

Jul 31, 2024 — If the lenses are polarized you should see the screen darkening or turning completely black at certain angles because of the polarization filter ...

Fashion photography with Dixie Dixon, Visual Storytelling with Joe McNally, Wedding photography with Jerry Ghionis and Sports photography with Rod Mar

By clicking Sign Up, you are opting to receive promotional, educational, e-commerce and product registration emails from Nikon Inc. You can update your preferences or unsubscribe any time.

Macro lensphotography

Bis weit in die Neuzeit hinein war weitgehend unklar, was Licht tatsächlich ist. Man glaubte teilweise, dass die Helligkeit den Raum ohne Zeitverzögerung ausfüllt. Pythagoras und Euklid waren der Auffassung, dass „heiße Sehstrahlen“ von den Augen ausgehen und von anderen Objekten zurückgedrängt werden.[4][5] Würde dies stimmen, müsste der Mensch auch im Dunklen sehen können.[6] Es gab jedoch auch schon seit der Antike Vorstellungen, nach denen das Licht von der Lichtquelle mit endlicher Geschwindigkeit ausgesendet wird.

Als Achluophobie, auch als Nyktophobie (von altgriechisch: νύξ, νυκτός – nýx, nyktós – f. = die Nacht) oder als Skotophobie (von σκότος, σκότου – skótos – m. = die Dunkelheit) bezeichnen Psychiater die ausgeprägte (z. T. krankhafte) Angst vor der Dunkelheit. Die Phobie kommt bei Kindern häufig vor, ist aber auch bei Erwachsenen anzutreffen. Eine als weniger gravierend bewertete Form der Achluophobie ist der Pavor nocturnus.

Die Leistungen der Lichtsinnesorgane anderer Lebewesen unterscheiden sich zum Teil erheblich von denen des Menschen. Die meisten Säugetiere haben ein eher unterentwickeltes Farbensehen. Vögel hingegen verfügen über mehr Zapfentypen und können dementsprechend mehr Farben unterscheiden als der Mensch. Bienen sind zwar mehr oder weniger unempfindlich für langwelliges (rotes) Licht, können aber das sehr kurzwellige UV-Licht wahrnehmen, das für den Menschen unsichtbar ist. Außerdem können sie die Polarisationsrichtung des Lichts wahrnehmen. Dies hilft ihnen bei der Orientierung im Raum mithilfe des Himmelblaus. Manche Schlangen wiederum können die ebenfalls für uns unsichtbaren IR-Strahlen mit ihren Grubenorganen wahrnehmen.

Jeder Punkt einer Wellenfront ist der Ausgangspunkt einer Elementarwelle. Eine Wellenfront ergibt sich als Überlagerung dieser Elementarwellen.

A true macro lens—Nikon's designation is Micro-NIKKOR—allows you to you take photographs that are 1:2 or 1:1 reproduction, which is ½ life size to life size respectively without the need for any additional accessories. A picture is described as life size when the image size  is equal to the subject size. At their closest focusing distances, most lenses provide approximately 3.2 to 5X—hardly enough to fill the frame with really small subjects. Micro-NIKKOR lenses are popular because they offer tremendous versatility, high reproduction ratios, ease-of-use and outstanding value. Micro-NIKKOR lenses will designate on the lens barrel the maximum reproduction ratio (1:2 or 1:1).

Many P&S digital cameras, such as the Nikon COOLPIX models and some Nikon DSLRs offer a Macro Shooting Mode, which is usually denoted by a flower icon. Some COOLPIX cameras even offer a Macro Shooting Mode that allows you to get as close as 0.4-inches to your subjects. With these cameras, the Macro Shooting Mode tells the lens to focus closer than it normally would; and set a wider aperture, to provide the soft blurred background often seen with Macro images.

Bei anorganischen Farbstoffen können auch Elektronen aus den d-Orbitalen eines Atoms in energetisch höher gelegene d-Orbitale angeregt werden (siehe Ligandenfeldtheorie). Des Weiteren können Elektronen ihre Position zwischen Zentralion und Ligand innerhalb eines Komplexes wechseln (siehe auch Charge-Transfer-Komplexe und Komplexchemie).

James Clerk Maxwell formulierte 1864 die noch heute gültigen Grundgleichungen der Elektrodynamik und erkannte, dass dadurch die Existenz freier elektromagnetischer Wellen vorhergesagt wurde. Da deren vorhergesagte Ausbreitungsgeschwindigkeit mit der bekannten Lichtgeschwindigkeit übereinstimmte, schloss er, dass das Licht wohl eine elektromagnetische Welle sei.[12] Er vermutete (wie damals nahezu alle Physiker), dass diese Welle nicht im leeren Raum existieren könne, sondern ein Ausbreitungsmedium brauche. Dieses Medium, das das gesamte Weltall ausfüllen müsste, wurde als Äther bezeichnet.[13]

Ein Photon wird entweder als Ganzes absorbiert und emittiert oder gar nicht. Es ist also „zählbar“ wie ein Teilchen. Trotzdem bleibt alles, was hier bisher über die Welleneigenschaften des Lichts gesagt wurde, gültig. Dieses merkwürdige Verhalten der Photonen, das jedoch auch alle anderen Quantenobjekte zeigen, wurde mit dem Schlagwort „Welle-Teilchen-Dualismus“ bezeichnet: Quantenobjekte sind weder wie klassische Teilchen noch wie klassische Wellen zu verstehen. Je nach Betrachtungsweise zeigen sie Eigenschaften der einen oder der anderen.

Macro Lensprice

CJL Engineering works with many highly diverse clients on a remarkable range of project types. Every project is unique, important, and designed with accuracy ...

Die Wellengleichung dieser elektromagnetischen Welle kann aus den Maxwell-Gleichungen hergeleitet werden. Daraus ergibt sich ein einfacher Zusammenhang zwischen der Lichtgeschwindigkeit, der magnetischen Feldkonstante μ 0 {\displaystyle \mu _{0}} und der elektrischen Feldkonstante ε 0 {\displaystyle \varepsilon _{0}} :

Wenn der einfallende Strahl aus dem optisch dichteren Medium unter einem flachen Winkel auf die Grenzfläche trifft, gibt es keinen reellen Winkel für den gebrochenen Strahl, der diese Bedingung erfüllt. In diesem Fall tritt statt der Brechung eine Totalreflexion auf.

Macro lensCanon

Licht stellt für Pflanzen – neben der Verfügbarkeit von Wasser – den wichtigsten Ökofaktor dar, weil es Energie für die Photosynthese liefert. Die von den Chlorophyll-Molekülen in den Chloroplasten absorbierte Lichtenergie wird genutzt, um Wassermoleküle zu spalten (Photolyse) und so Reduktionsmittel für die Photosynthese herzustellen. Diese werden in einem zweiten Schritt verwendet, um Kohlenstoffdioxid schrittweise schließlich zu Glucose zu reduzieren, woraus unter anderem Stärke aufgebaut wird. Der bei der Fotolyse anfallende Sauerstoff wird als Reststoff an die Atmosphäre abgegeben. Die Summenreaktionsgleichung der Photosynthese lautet:

die Fehlerlosigkeit [der Fehlerlosigkeit; —] Substantiv. flawlessness ▽ ◼◼◼noun [UK: ˈflɔːlɪsnəs ] [US: ˈflɔləsnəs ]. ↑. DictZone. fehlerlos - more search ...

Der Licht- oder Sehsinn ist für viele Tiere einer der wichtigsten Sinne. Er dient zur Orientierung im Raum, zur Steuerung des Tag-Nacht-Rhythmus, zum Erkennen von Gefahren, zum Aufspüren von Beute und zur Kommunikation mit Artgenossen. Daher haben sich im Laufe der Evolution in den verschiedensten Taxa die unterschiedlichsten Lichtsinnesorgane entwickelt. Diese reichen von den einfachen Augenflecken von Euglena über einfache Pigmentfelder bis zu den komplex aufgebauten Facettenaugen und Linsenaugen. Nur wenige Tiere sind vollkommen unempfindlich für Lichtreize. Dies ist höchstens dann der Fall, wenn sie in völliger Dunkelheit leben, wie Höhlentiere.

Aug 11, 2014 — Book Description. For more than 400 years, optical glass has provided mankind with a window into both the hidden microcosm and vast outer cosmos ...

Photo taken with a 105mm Micro-NIKKOR lens. The subject, a Praying mantis, was illuminated using Nikon's Close-up Speedlight system.

And remember too, that just because a Micro-NIKKOR lens gives you the ability to create photographs up to life size (1:1), you don't always have to use the lens as such. In addition to macro capabilities, the lenses are also fully functional lenses at their prime focal length; so the AF-S DX Micro-NIKKOR 85mm f/3.5G ED VR can be used for portraiture or action photography and D-Movies when used on a DX-format DSLR, the PC-E Micro-NIKKOR 45mm f/2.8D ED can be used for architecture or landscape photography or D-Movies, and the Micro-NIKKOR 105mm f/2.8 lens is a great portrait lens for FX-format DSLRs-what all of the lenses have in common is that they also offer extremely close macro shooting capabilities.

Die physikalischen Eigenschaften des Lichts werden durch verschiedene Modelle beschrieben: In der Strahlenoptik wird die geradlinige Ausbreitung des Lichts durch „Lichtstrahlen“ veranschaulicht; in der Wellenoptik wird die Wellennatur des Lichts betont, wodurch auch Beugungs- und Interferenzerscheinungen erklärt werden können. In der Quantenphysik schließlich wird das Licht als ein Strom von Quantenobjekten, den Photonen (veranschaulichend auch „Lichtteilchen“ genannt), beschrieben. Eine vollständige Beschreibung des Lichts bietet die Quantenelektrodynamik. Im Vakuum breitet sich Licht mit der konstanten Lichtgeschwindigkeit von 299.792.458 m/s aus. Trifft Licht auf Materie, so kann es gestreut, reflektiert, gebrochen und verlangsamt oder absorbiert werden.

A ring light is an easy-to-use multipurpose lighting tool that enables users to obtain a source of uniform light that comes directly from the point of view of ...

Die Konkurrenz der Pflanzen ums Licht macht sich im „Stockwerkaufbau“ des Waldes und der damit verbundenen Spezialisierung von Licht- und Schattenpflanzen oder in der jahrzeitlichen Abfolge verschiedener Aspekte bemerkbar. In Gewässern dient nur die lichtdurchflutete oberste Schicht, die Nährschicht, der Bildung von Biomasse und Sauerstoff, hauptsächlich durch Phytoplankton. Weil viele Tiere und Einzeller durch das hohe Nahrungsangebot und den vergleichsweise hohen Sauerstoffgehalt des Wassers hier gute Lebensbedingungen finden, werden sie durch das Licht angelockt.

Michael Faraday erbrachte 1846 als erster den Nachweis, dass Licht und Magnetismus zwei miteinander verbundene physikalische Phänomene sind. Er veröffentlichte den von ihm gefundenen magnetooptischen Effekt, der heute als Faraday-Effekt[10] bezeichnet wird, unter dem Titel Über die Magnetisierung des Lichts und die Belichtung der Magnetkraftlinien.[11]

Licht ist, wie Feuer, eines der bedeutendsten Phänomene für alle Kulturen. Künstlich erzeugtes Licht aus Lichtquellen ermöglicht dem Menschen heutzutage ein angenehmes und sicheres Leben auch bei terrestrischer Dunkelheit (Nacht) und in gedeckten Räumen (Höhlen, Gebäuden). Technisch wird die Funktionsgruppe, die Licht erzeugt, als Lampe, Leuchtmittel oder Lichtquelle bezeichnet. Der Halter für die Lampe bildet mit dieser eine Leuchte.

Nikonmacro lens

Im Folgenden werden die wichtigsten Modelle zur Beschreibung des Lichts vorgestellt. Wie alle Modelle in der Physik sind auch die hier aufgeführten in ihrem Geltungsbereich beschränkt. Eine nach unserem heutigen Wissen vollständige Beschreibung des Phänomens „Licht“ kann nur die Quantenelektrodynamik liefern.

Nikon's Micro-NIKKOR lenses are designed to perform their best from infinity all the way down to their closest focusing distances, in the case of the AF-S Micro-NIKKOR 60mm f/2.8G as close as 6 inches. This close focusing distance is known as free working distance and is what distinguishes Micro-NIKKOR lenses from one another. Moving in extremely close to the subject using a Micro-NIKKOR lens lets you to fill the entire frame with your subject, allowing you to expand your artistic vision.

Lindsay is a former Sr. Product Manager, Pro DSLR for Nikon. Early in his career Lindsay served as general manager of Nikon House in New York City's Rockefeller Center, where he hosted some of the world's finest photographers as well as photo enthusiasts and photo writers, editors and educators from around the world. He has held technical, marketing and product management positions for the company, and for 19 years was a contributing writer, photographer and editor of Nikon World magazine.

In the case of a spherical lens, or a spherical mirror, this spherical aberration occurs because the angle of incidence further away from the optical axis is ...

Neben Zapfen und Stäbchen gibt es einen dritten Lichtrezeptor, die melanopsinhaltigen Ganglienzellen. Diese Rezeptoren reagieren besonders empfindlich auf blaues Licht und sind an der Steuerung der inneren Uhr beteiligt. Ihre Entdeckung Anfang der Jahrtausendwende forcierte die Entwicklung von tageslichtähnlichen Beleuchtungskonzepten für Innenräume, wie bspw. das Human Centric Lighting.[20]

Die Netzhaut des Auges ist mit verschiedenen Sinneszellen ausgestattet: Die Stäbchen weisen eine breite spektrale Ansprechbarkeit auf und zeichnen sich durch eine hohe Sensitivität aus. Sie sind daher auf das Sehen in der Dämmerung spezialisiert, können jedoch keine Farben unterscheiden. Die Zapfen hingegen, die an stärkere Intensitäten angepasst sind, kommen in drei verschiedenen Typen vor, die jeweils bei einer anderen Wellenlänge ihr Reaktionsoptimum haben. Ihre Verschaltung ermöglicht letztlich das Farbensehen.

DXOMARK's comprehensive camera lens test result database allows you to browse and select lenses for comparison based on their characteristics, brand, price, ...

Licht wird an der Grenzfläche zwischen zwei Medien unterschiedlicher optischer Dichte gebrochen, d. h., ein Strahl ändert an dieser Grenzfläche seine Richtung. (Der Vollständigkeit halber sei gesagt, dass an einer solchen Grenzfläche stets auch die Reflexion mehr oder weniger stark auftritt.) Das Brechungsgesetz von Snellius besagt:

Lichtintensität wird als Helligkeit empfunden. Das Auge kann sich durch verschiedene Mechanismen an die – viele Zehnerpotenzen umfassenden – Intensitäten anpassen (siehe Adaption). Die empfundene Helligkeit hängt dabei mit der tatsächlichen Intensität über das Weber-Fechner-Gesetz zusammen.

Using a short telephoto macro lens, such as the 200mm Micro-NIKKOR lets you achieve life size reproduction of your subject without having to get as close as with the 60mm Micro-NIKKOR—ideal for shooting insects or other creatures that you may not want to get too close to.

What is amacro lensmm

Macro photography is one of the most interesting types of photography, as it lets you show detail that is otherwise not easily seen by the naked eye.

Mit Elementarwelle ist in diesem Zusammenhang eine Kugelwelle gemeint, die von einem bestimmten Punkt ausgeht. Wellenfronten sind die Flächen gleicher Phase. Der Abstand zwischen zwei aufeinander folgenden Wellenfronten ist somit die Wellenlänge. Die Wellenfronten einer ebenen Welle sind also Ebenen, die Wellenfronten von Elementarwellen sind konzentrische Kugelflächen. Die Ausbreitungsrichtung (also die Richtung des Wellenvektors) bildet stets eine Normale zur Wellenfront. Mit der Wellenoptik lassen sich alle Phänomene der Beugung und Interferenz verstehen. Sie eignet sich aber auch, das Reflexions- und das Brechungsgesetz herzuleiten. Die Wellenoptik widerspricht also nicht der Strahlenoptik, sondern erweitert und vertieft diese.

bestlensformacrophotography - canon

Historisch wurde die quantenmechanische Beschreibung des Lichts notwendig, weil sich einige Phänomene mit der rein klassischen Elektrodynamik nicht erklären ließen:

We've got a variety of LED lights, too, like strips for placing under a cabinet or a work lamp that plugs into your laptop's USB.

In der heute gängigsten Interpretation der Quantenmechanik (Kopenhagener Deutung) kann man den genauen Ort eines Photons nicht a priori vorhersagen. Man kann nur Aussagen über die Wahrscheinlichkeit machen, mit der ein Photon an einer bestimmten Stelle auftreffen wird. Diese Wahrscheinlichkeitsdichte ist durch das Betragsquadrat der Amplitude der Lichtwelle gegeben.

Licht ist der für das menschliche Auge adäquate Sinnesreiz. Dabei wird die Intensität des Lichts als Helligkeit wahrgenommen, die spektrale Zusammensetzung als Farbe.[3]

Der einfallende und der gebrochene Strahl sowie das Lot auf der Grenzfläche liegen in einer Ebene. Dabei ist der Winkel zwischen Lot und Lichtstrahl in dem Medium kleiner, das den höheren Brechungsindex hat.

Es ist zu beachten, dass diese Tabelle nur für monochromatisches (einfarbiges) Licht gilt. Mischfarben rufen andere Farbeindrücke hervor. Beispielsweise erscheint dem menschlichen Sehsinn eine Mischfarbe aus grünem und rotem Licht gelb, während eine Mischung aus rotem und blauem Licht als Magenta erscheint. Im Regenbogen, in dem das Sonnenlicht in seine monochromatischen spektralen Bestandteile zerlegt ist, kommt Magenta als Farbe nicht vor im Gegensatz zu Gelb. Dies liegt daran, dass die Grundfarben Blau und Rot im Regenbogen weit auseinander liegen, weshalb eine Mischung von Magenta auf natürlichem Wege nicht zustande kommt. Im Gegensatz dazu liegen Grün und Rot direkt nebeneinander, weswegen unser Auge denkt, dass es die Farbe Gelb sieht.[18] Die Farbe Braun, die allgemein für eine Mischfarbe gehalten wird, kann dagegen durch einfarbiges Orange erzeugt werden, wenn dessen Intensität im Vergleich zur Umgebung schwach ist.[19]

Die Strahlenoptik (auch geometrische Optik) macht sich die Näherung zunutze, dass die Ausbreitung des Lichts durch gerade „Strahlen“ veranschaulicht werden kann. Diese Näherung ist vor allem dann gerechtfertigt, wenn die Abmessungen der Versuchsanordnung groß gegenüber der Wellenlänge des Lichts sind. Dann können sämtliche Beugungsphänomene vernachlässigt werden. Das Bindeglied zwischen Wellenoptik und Strahlenoptik ist der Wellenvektor, dessen Richtung mit der Richtung des Lichtstrahls übereinstimmt. Die Strahlenoptik ist besonders gut geeignet, Phänomene wie Licht und Schatten, Reflexion oder Brechung zu beschreiben. Daher kann mit ihr die Funktion vieler optischer Geräte (Lochkamera, Lupe, Teleskop, Mikroskop) erklärt werden. Insbesondere sind die Abbildungsgesetze auch die Grundlage für das Verständnis des Brechapparats im menschlichen Auge.

Im Christentum steht das Licht in der Selbstbezeichnung Jesu Christi – „Ich bin das Licht der Welt.“ (Joh 8,12 EU) – für die Erlösung des Menschen aus dem Dunkel der Gottesferne. Ebenso wird auch auf Luzifer als den Lichtbringer oder Lichtträger referiert. In der biblischen Schöpfungsgeschichte ist das Licht das zweite Werk Gottes, nach Himmel und Erde. Im Requiem, der liturgischen Totenmesse, ist ein Lux aeterna enthalten. Im Buddhismus und anderen Religionen wie im allgemeinen Sprachgebrauch gibt es das Ziel der Erleuchtung. Buddha selbst wird „der Erleuchtete“ genannt. Die Kategorien „hell“ (Antonym: „dunkel“) und „klar“ (Antonym: „nebulös“) werden zumeist positiv konnotiert. In dem Satz: „Das Licht der Aufklärung besiegte die Dunkelheit des Mittelalters.“ ist das uralte, letztlich manichäische Motiv vom „Sieg des Lichts über die Dunkelheit“ erkennbar. Auch der Ausdruck „Licht des Wissens“ greift das Licht symbolhaft auf um etwas über das Gegenteil Erhabenes zu beschreiben.

Image