In turn, a map of the matter in a galaxy cluster helps provide better understanding and analysis of the gravitationally lensed images. A model of the matter distribution can help identify multiple images of the same galaxy or predict where the most distant galaxies are likely to appear in a galaxy cluster image. Astronomers work between the gravitational lenses and the cluster matter distribution to improve our understanding of both.

These lensed images also act as probes of the matter distribution in the galaxy cluster. The results indicate that most of the matter in a galaxy cluster is not in the visible galaxies or hot gas around them and does not emit light, and is thus called dark matter. The distribution of lensed images reflects the distribution of all matter, both visible and dark. Hubble’s images of gravitational lensing have been used to create maps of dark matter in galaxy clusters.

More complex gravitational lensing arises in observations of massive clusters of galaxies. While the distribution of matter in a galaxy cluster generally does have a center, it is never circularly symmetric and can be significantly lumpy. Background galaxies are lensed by the cluster and their images often appear as short, thin “lensed arcs” around the outskirts of the cluster.

The NASA Hubble Space Telescope is a project of international cooperation between NASA and ESA. AURA’s Space Telescope Science Institute in Baltimore, Maryland, conducts Hubble science operations.

The diverse, lensed images of crosses, rings, arcs and more are both intriguing and informative. Gravitational lensing probes the distribution of matter in galaxies and clusters of galaxies, and enables observations of the distant universe. Hubble’s data also provide a basis and guide for the James Webb Space Telescope, whose infrared observations complement those of Hubble.

Because very distant galaxies are very faint, gravitational lenses extend Hubble’s view deeper into the universe. Gravitational lensing not only distorts the image of a background galaxy, it can amplify its light. Looking through a lensing galaxy cluster, Hubble can see fainter and more distant galaxies than otherwise possible. It is like having an extra lens that is the size of the galaxy cluster. The Frontier Fields project has examined multiple galaxy clusters, measured their lensing and matter distribution and identified a collection of these most distant galaxies.

The simplest type of gravitational lensing occurs when there is a single concentration of matter at the center, such as the dense core of a galaxy. The light of a distant galaxy is redirected around this core, often producing multiple images of the background galaxy. When the lensing approaches perfect symmetry, a complete or almost-complete circle of light is produced, called an Einstein ring. Hubble observations have helped to greatly increase the number of Einstein rings known to astronomers.

We use cookies to facilitate online purchases and analyze our traffic. By clicking "Accept", you consent to our use of cookies.

The PCIE-POE2-LR (LR-LINK LRES2002PT) is a PCIe x4 PoE Gigabit Dual Port Copper industrial Ethernet Server Adapter based on the Intel I350 chipset compatible with x8, x16 lanes. The PoE adapter is designed mainly for use in industrial vision inspection server and equipment, vision field client, fast moving Ethernet data transmission equipment, and is also suitable for ordinary servers. The LRES2002PT interface card is designed for industrial cable access, with screw lock connections, effectively solving the problem of industrial instability. The larger heat sink improves heat dissipation in environments with higher temperatures, ensuring stable operation of the PoE adapter card for a long time. Carefully selected RJ45 connectors with thickened gold wires provides a more solid reliable connectivity. This card can run 2 Helios2+ cameras, each with <30W peak power. Please note this interface card does not offer isolated PoE.

We use cookies to facilitate online purchases and analyze our traffic. By clicking "Accept", you consent to our use of cookies.

When taken to the extreme, gravity can create some intriguing visual effects that Hubble’s is well suited to observing. Einstein’s general theory of relativity describes how mass concentrations distort the space around them. A gravitational lens can occur when a huge amount of matter, like a cluster of galaxies, creates a gravitational field that distorts and magnifies the light from distant galaxies that are behind it but in the same line of sight. The effect is like looking through a giant magnifying glass. It allows researchers to study the details of early galaxies too far away to be seen with current technology and telescopes.

Smaller objects, like individual stars, can also act as gravitational lenses when they pass in front of more distant stars. For a few days or weeks, light from the more distant star temporarily appears brighter because it is magnified by the gravity of the closer object. This effect is known as gravitational microlensing.

*For US customers only*: This item is subject to a 25% US import tariff duty. To ensure seamless delivery and reduce delays with U.S. Customs and Border Protection, LUCID collects this duty at online checkout. For more details click here.