Triplett LT75-NIST Digital Light Meter Lux/Fc, 0 to 40000 Fc, - fc light meter
Lineartransducer ultrasound used for
The sensor assembly emits a current pulse that travels the length of the waveguide, emitting a magnetic field around the length of the probe. As the pulse passes through the field of the permanent magnet, the interaction creates a strain pulse that travels back down the length of the waveguide until the sensor assembly senses it.
As objects grow hotter, they radiate energy dominated by shorter wavelengths, changing color before our eyes. A flame on a blow torch shifts from reddish to bluish in color as it is adjusted to burn hotter. In the same way, the color of stars tells scientists about their temperature.
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Also called a Linear Displacement Transducer, or LDT for short, common applications are inside linear actuators such as hydraulic cylinders. The output configurations include, but are not limited to, 0-10 V, 4-20 mA and CANBUS of various standards. When installed inside a hydraulic cylinder, the rod must be gun-drilled to allow space for the probe, and the magnet gets bolted to the piston’s back.
Lineartransducer ultrasound
LinearTransducer diagram
Laser altimetry is an example of active remote sensing using visible light. NASA's Geoscience Laser Altimeter System (GLAS) instrument onboard the Ice, Cloud, and land Elevation Satellite (ICESat) enabled scientists to calculate the elevation of Earth's polar ice sheets using lasers and ancillary data. Changes in elevation over time help to estimate variations in the amount of water stored as ice on our planet. The image below shows elevation data over the West Antarctic Ice Streams.
The visible light spectrum is the segment of the electromagnetic spectrum that the human eye can view. More simply, this range of wavelengths is called visible light. Typically, the human eye can detect wavelengths from 380 to 700 nanometers.
Lineartransducer Working principle
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet's dense clouds to…
As the full spectrum of visible light travels through a prism, the wavelengths separate into the colors of the rainbow because each color is a different wavelength. Violet has the shortest wavelength, at around 380 nanometers, and red has the longest wavelength, at around 700 nanometers.
The Sun is the dominant source for visible-light waves our eyes receive. The outer-most layer of the Sun's atmosphere, the corona, can be seen in visible light. But it is so faint it cannot not be seen except during a total solar eclipse because the bright photosphere overwhelms it. The photograph below was taken during a total eclipse of the Sun where the photosphere and chromosphere are almost completely blocked by the moon. The tapered patterns—coronal streamers—around the Sun are formed by the outward flow of plasma that is shaped by magnetic field lines extending millions of miles into space.
Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.
LinearTransducer 4-20mA
Mobile Hydraulic Tips focuses on pumps, fittings, valves, manifolds and other products and news in the Mobile Hydraulics industry.
Close examination of the visible-light spectrum from our Sun and other stars reveals a pattern of dark lines—called absorption lines. These patterns can provide important scientific clues that reveal hidden properties of objects throughout the universe. Certain elements in the Sun's atmosphere absorb certain colors of light. These patterns of lines within spectra act like fingerprints for atoms and molecules. Looking at the Sun's spectrum, for example, the fingerprints for elements are clear to those knowledgeable about those patterns.
Lineardisplacement transducer
Temperature, pressure, and displacement are typical transducer offerings. A linear displacement transducer measures linear position or distance, especially when high accuracy is needed.
NASA explores the unknown in air and space, innovates for the benefit of humanity, and inspires the world through discovery.
Linearposition Transducer GymAware
National Aeronautics and Space Administration, Science Mission Directorate. (2010). Visible Light. Retrieved [insert date - e.g. August 10, 2016], from NASA Science website: http://science.nasa.gov/ems/09_visiblelight
All electromagnetic radiation is light, but we can only see a small portion of this radiation—the portion we call visible light. Cone-shaped cells in our eyes act as receivers tuned to the wavelengths in this narrow band of the spectrum. Other portions of the spectrum have wavelengths too large or too small and energetic for the biological limitations of our perception.
The difference between the sent and received signal allows the sensing unit to precisely identify the distance of the permanent magnet along the length of the waveguide. Many designs are accurate to within hundredths of an inch or better.
Linear transducers may also operate outside of a linear actuator altogether. Stand-alone LDTs may be mounted beside or atop any actuator, where the rod end of the cylinder attaches to the mounting hardware at the end of the sensor. A bar or rod attaches the two, and the transducer is along for the ride to accurately measure linear displacement.
Isaac Newton's experiment in 1665 showed that a prism bends visible light and that each color refracts at a slightly different angle depending on the wavelength of the color.
LinearTransducer sensor
Patterns are also evident in a graph of an object's reflectance. Elements, molecules, and even cell structures have unique signatures of reflectance. A graph of an object's reflectance across a spectrum is called a spectral signature. Spectral signatures of different Earth features within the visible light spectrum ARE shown below.
Science Mission Directorate. "Visible Light" NASA Science. 2010. National Aeronautics and Space Administration. [insert date - e.g. 10 Aug. 2016] http://science.nasa.gov/ems/09_visiblelight
Our Sun produces more yellow light than any other color because its surface temperature is 5,500°C. If the Sun's surface were cooler—say 3,000°C—it would look reddish, like the star Betelgeuse. If the Sun were hotter—say, 12,000°C—it would look blue, like the star Rigel.
A port boss must be welded or machined into the “position 5” of the cylinder cap (its back end), where the transducer may be screwed tight upon installation. Some hydraulic cylinder mounts prevent the back end installation, such as with ME6 or MX1 mounts, and any clevis or rear pivot type cylinders. Rear mount cylinders will take advantage of internally mounted sensor assemblies which employ a connector assembly mounted to one of the available cap side surfaces.
Laser altimeters can also make unique measurements of the heights and characteristics of clouds, as well as the top and structure of the vegetation canopy of forests. They can also sense the distribution of aerosols from sources such as dust storms and forest fires.
Linear transducers work using a principle called magnetostriction. A typical transducer uses three major components; the sensor assembly, a waveguide and a permanent magnet. The sensor assembly houses the control electronics and is responsible for sending and receiving the signal, then transmitting that signal to the PLC. The waveguide is the probe extending the length of the transducer, which emits and senses the magnetic field. Finally, the permanent magnet attaches to the traveling component the transducer measures.