This website uses cookies to deliver some of our products and services as well as for analytics and to provide you a more personalized experience. Click here to learn more. By continuing to use this site, you agree to our use of cookies. We've also updated our Privacy Notice. Click here to see what's new.

Infraredwavelength

Image

Infraredlight

This website uses cookies to deliver some of our products and services as well as for analytics and to provide you a more personalized experience. Click here to learn more. By continuing to use this site, you agree to our use of cookies. We've also updated our Privacy Notice. Click here to see what's new.

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution. Contact your librarian or system administrator or Login to access Optica Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution. Contact your librarian or system administrator or Login to access Optica Member Subscription

infrared中文

When this research was performed, the authors were with the Department of Physical Electronics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.

Infraredwavelength range

Mengyu Jia, Xueying Chen, Huijuan Zhao, Shanshan Cui, Ming Liu, Lingling Liu, and Feng Gao Opt. Express 23(2) 1337-1352 (2015)

Collimated light sources in turbid media are difficult to describe within the diffusion approximation, because they do not meet the requirement of near isotropy. For precise calculation of light intensities close to the source, alternative descriptions of the light source are necessary. In this paper the transition of collimated light into diffusivity is studied by Monte Carlo simulations. On the basis of these simulations and the diffusion approximation a hybrid approach is designed and used to analyze approaches based on analytic source terms. The influence of boundaries to air is studied. The benefits of increased approximation orders are investigated. It is shown that, even in the presence of strong absorption, the diffusion approach can give satisfactory results if only the source terms are suitably chosen.

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution. Contact your librarian or system administrator or Login to access Optica Member Subscription

Collimated light sources in turbid media are difficult to describe within the diffusion approximation, because they do not meet the requirement of near isotropy. For precise calculation of light intensities close to the source, alternative descriptions of the light source are necessary. In this paper the transition of collimated light into diffusivity is studied by Monte Carlo simulations. On the basis of these simulations and the diffusion approximation a hybrid approach is designed and used to analyze approaches based on analytic source terms. The influence of boundaries to air is studied. The benefits of increased approximation orders are investigated. It is shown that, even in the presence of strong absorption, the diffusion approach can give satisfactory results if only the source terms are suitably chosen.