Inside The Visual Dome, A World Prompted Into Existence ... - ai domes
Observations of stars and models of stellar atmospheres are used to differentiate between rocket plumes and cosmic objects. The same method is now being studied for use in early warning systems.
Camera sensor
As CMOS continues to advance, it is expected to play an increasingly important role in robotics and warehouse automation.
CMOSimage sensor PDF
It has been said that astronomy is a humbling and character-building experience. There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we’ve ever known.”
Recent improvements in CMOS sensor technology have made them a viable in image quality, comparable to CCD cameras, making them preferable for cost/energy efficiency as well as high speed imaging applications.
CMOS technology has come a long way in the past few years, enabling improved image quality that is comparable to CCD sensors. Thanks to recent advancements in CMOS technology, images produced with this type of sensor now rival the quality of CCD sensors, significantly improving the usability and performance of devices across various applications.
The CCD and CMOS sensor both exploit the photoelectric effect to capture light. Historically, CCDs produced higher-quality images with less noise, while CMOSs was more power efficient.
Finley, D., Value of Radio Astronomy, http://www.nrao.edu/index.php/learn/radioastronomy/radioastronomyvalue, Retrieved November 2013
The ongoing advancements and innovations in CMOS are expected to drive its adoption in an ever-expanding range of applications, including CMOS devices such as mobile devices.
In airports, a gas chromatograph — for separating and analysing compounds — designed for a Mars mission is used to survey baggage for drugs and explosives.
CMOS sensors are now more suitable for applications that require high-quality imaging in challenging lighting conditions, such as surveillance systems and astronomy. This is due to their improved low-light sensitivity and NIR imaging capabilities, which are now better than those of traditional CCDs.
cmos图像传感器
There are still many unanswered questions in astronomy. Current research is struggling to understand questions like: “How old are we?”, “What is the fate of the Universe?” and possibly the most interesting: “How unique is the Universe, and could a slightly different Universe ever have supported life?” But astronomy is also breaking new records every day, establishing the furthest distances, most massive objects, highest temperatures and most violent explosions.
As CMOS technology continues to improve, it is expected to play an even more significant role in machine vision and embedded vision systems in the future.
Another important example of how astronomical research has contributed to the medical world is in the development of clean working areas. The manufacture of space-based telescopes requires an extremely clean environment to prevent dust or particles that might obscure or obstruct the mirrors or instruments on the telescopes (such as in NASA’s STEREO mission; Gruman, 2011). The cleanroom protocols, air filters, and bunny suits that were developed to achieve this are now also used in hospitals and pharmaceutical labs (Clark, 2012).
Throughout History humans have looked to the sky to navigate the vast oceans, to decide when to plant their crops and to answer questions of where we came from and how we got here. It is a discipline that opens our eyes, gives context to our place in the Universe and that can reshape how we see the world. When Copernicus claimed that Earth was not the centre of the Universe, it triggered a revolution. A revolution through which religion, science, and society had to adapt to this new world view.
Paris, N. 2007, Hawking to experience zero gravity, The Daily Telegraph, http://www.telegraph.co.uk/news/worldnews/1549770/Hawking-to-experience-zero-gravity.html, August 2013
Both CCD and CMOS sensors have found a wide range of applications across various industries and fields. The choice between CMOS vs CCD technologies often depends on the specific requirements of the application, such as image quality, power consumption, and cost.
CMOS sensors have also improved in terms of low-light sensitivity and NIR imaging, with some sensors now offering better performance in these areas than traditional CCD sensors. This improvement in low-light sensitivity and NIR imaging has made CMOS sensors more suitable for applications that require high-quality imaging in challenging lighting conditions, such as surveillance systems and astronomy.
Despite this limitation, CCD is renowned for its ability to produce high-quality, low-noise images, which originally made it a popular choice for various applications, including machine vision and embedded vision systems, before CMOS caught up in technological advancement.
Astronomical methods can be used to find new fossil fuels as well as to evaluate the possibility of new renewable energy sources (National Research Council, 2010):
Radio astronomers developed a method that is now used as a non-invasive way to detect tumours. By combining this with other traditional methods, there is a true-positive detection rate of 96% in breast cancer patients (Barret et al., 1978).
International Astronomical Union 2012, IAU Astronomy for Development Strategic Plan 2010–2012. https://www.iau.org/static/education/strategicplan_2010-2020.pdf, June 2013
Although “blue-skies research” like astronomy rarely contributes directly with tangible outcomes on a short time scale, the pursuit of this research requires cutting-edge technology and methods that can on a longer time scale, through their broader application make a difference.
Shasharina, S. G. et al. 2005, GRIDL: high-performance and distributed interactive data language, High Performance Distributed Computing, HPDC-14. Proceedings. 14th IEEE International Symposium, 291–292
One of the primary advantages of the CMOS sensor over the CCD sensor is their lower power consumption, which can be up to 100 times less than that of the CCD sensor [Review of CMOS image sensor - ScienceDirect]. Moreover, due to the integrative nature of CMOS, the manufacturing process of a CMOS sensor is more cost-effective than that of a CCD sensor, making them more attractive for large-scale production and use in various applications.
The higher resolution of CMOS sensors has enabled manufacturers to create digital cameras and imaging systems with greater detail and clarity, making them more competitive with CCD sensors. This has allowed for a wider range of applications, from medical imaging to surveillance and security.
Astronomy has always had a significant impact on our world view. Early cultures identified celestial objects with the gods and took their movements across the sky as prophecies of what was to come. We would now call this astrology, far removed from the hard facts and expensive instruments of today’s astronomy, but there are still hints of this history in modern astronomy. Take, for example, the names of the constellations: Andromeda, the chained maiden of Greek mythology, or Perseus, the demi-god who saved her.
As CMOS technology continues to advance, it is expected that these sensors will further surpass CCD sensors in terms of performance and market share.
These two types of sensors have different advantages and disadvantages, and the choice of which to use depends on the specific needs and of the photographer.
Some other examples of technology transfer between astronomy and industry are listed below (National Research Council, 2010):
However many space missions have phased out the use of the CCD sensor for CMOS due to lower power consumption. In fact, NASA's Jet Propulsion Laboratory (JPL) team developed their own Active Pixel Sensor (APS) CMOS image sensor in the 1990s due to their need to miniaturize cameras on interplanetary spacecraft. This invention resulted in a setup that drew 100 times less power than CCD setups [Image Sensors Enhance Camera Technologies | NASA Spinoff].
At their core, both CCD and CMOS exploit the photoelectric effect to transform light into electrical signals. Although these technologies share the same goal, their methods for capturing, quantifying, and recreating images differ considerably. CCD sensors tend to produce higher-quality images with less noise due to their thicker epilayers, made them better suited for applications requiring superior image quality and low noise, such as astronomy and astrophotography pre-1990s.
CCD sensors are analog devices that employ a charge transfer process to capture images. Each pixel in a CCD sensor consists of a photodiode and a potential well, which act as a receptacle for photoelectrons. The speed of image acquisition is limited by the conversion of photoelectrons into signals (voltage) at a single port.
Astronomy is one of the few scientific fields that interacts directly with society. Not only transcending borders, but actively promoting collaborations around the world. In the following paper, we outline the tangible aspects of what astronomy has contributed to various fields.
Looking through the fluid-filled, constantly moving eye of a living person is not that different from trying to observe astronomical objects through the turbulent atmosphere, and the same fundamental approach seems to work for both. Adaptive optics used in astronomy can be used for retinal imaging in living patients to study diseases such as macular degeneration and retinitis pigmentosa in their early stages. (Boston Micromachines Corporation 2010)
In contrast, CMOS sensors consume far less power, cost less, offer on chip functionality, offer better integration through miniaturization, offer faster processing, offer higher speed imaging, and avoid CCD technology visual artifacts like blooming and smearing effects, making them an ideal choice for most imaging applications today [Review of CMOS image sensor - ScienceDirect].
National Research Council 2010, New Worlds, New Horizons in Astronomy and Astrophysics. Washington, DC: The National Academies Press
When Dr. Bill Wang, PhD was asked why he chose CMOS over CCD when founding CMOS Sensor Inc, he responded, "Because CMOS is more integrative than CCD. With CMOS, we are able to deliver not only the sensor, but integrate the digital interfaces and other parts needed to make our customers' lives easier. It's more simple that way."
Larry Altschuler, an astronomer, was responsible for the development of tomography - the process of imaging in sections using a penetrating wave - via his work on reconstructing the Solar Corona from its projections. (Schuler, M. D. 1979)
cmos传感器
There are many things that people encounter on an everyday basis that were derived from astronomical technologies. Perhaps the most commonly used astronomy-derived invention is the wireless local area network (WLAN). In 1977 John O’Sullivan developed a method to sharpen images from a radio telescope. This same method was applied to radio signals in general, specifically to those dedicated to strengthening computer networks, which is now an integral part of all WLAN implementations (Hamaker et al., 1977).
However, recent advancements in CMOS have led to the production of CMOS image sensors with image quality approaching that of CCD sensors, making them increasingly competitive in various applications. Recently, as of 2020, CMOS cameras have caught up to CCD cameras in image quality. [https://www.testandmeasurementtips.com/the-difference-between-ccd-and-cmos-image-sensing-faq/]
These factors have contributed to the growing popularity of CMOS devices, especially in applications where power efficiency and cost are crucial.
The decline of CCD technology can be attributed to the lack of investment in the development of new CCD sensors and the growing popularity of CMOS sensors, which offer better performance, lower cost, and greater power efficiency. As a result, CCD sensors are becoming less popular, with their use diminishing in various applications as CMOS sensors continue to improve and gain market share.
“Preserving knowledge is easy. Transferring knowledge is also easy. But making new knowledge is neither easy nor profitable in the short term. Fundamental research proves profitable in the long run, and, as importantly, it is a force that enriches the culture of any society with reason and basic truth.” - Ahmed Zewali, winner of the Nobel Prize in Chemistry (1999).
International Astronomical Union 2010, International Year of Astronomy 2009 Reached Hundreds of Millions of People: Final Report Released, http://www.astronomy2009.org/news/pressreleases/detail/iya1006, August 2013
The police use hand-held Chemical Oxygen Demand (COD) photometers — instruments developed by astronomers for measuring light intensity — to check that car windows are transparent, as determined by the law.
In contrast to CCD sensors, CMOS sensors incorporate an amplifier in each pixel, resulting in lower power consumption and faster processing of signals. However, the presence of additional amplifiers and an analog to digital converter (ADC) in the circuit generates more noise in the output image.
ESA 2013, Identifying Alzheimer’s using space software,http://www.esa.int/Our_Activities/Technology/TTP2/Identifying_Alzheimer’s_using_space_software, July 2013
Astronomers struggle constantly to see objects that are ever dimmer and further away. Medicine struggles with similar issues: to see things that are obscured within the human body. Both disciplines require high-resolution, accurate and detailed images. Perhaps the most notable example of knowledge transfer between these two studies is the technique of aperture synthesis, developed by the radio astronomer and Nobel Laureate, Martin Ryle (Royal Swedish Academy of Sciences, 1974). This technology is used in computerised tomography (also known as CT or CAT scanners), magnetic resonance imaging (MRIs), positron emission tomography (PET) and many other medical imaging tools.
cmossensor vs full-frame
On a personal level, teaching astronomy to our youth is also of great value. It has been proven that pupils who engage in astronomy-related educational activities at a primary or secondary school are more likely to pursue careers in science and technology, and to keep up to date with scientific discoveries (National Research Council, 1991). This does not just benefit the field of astronomy, but reaches across other scientific disciplines.
An Australian company, called Ingenero, has created solar radiation collectors to harness the power of the Sun for energy on Earth. They have created collectors up to 16 metres in diameter, which is only possible with the use of a graphite composite material developed for an orbiting telescope array.
Small thermal sensors initially developed to control telescope instrument temperatures are now used to control heating in neonatology units — units for the care of newborn babies (National Research Council, 1991).
These are all very tangible examples of the effect astronomy has had on our everyday lives, but astronomy also plays an important role in our culture. There are many books and magazines about astronomy for non-astronomers. A Brief History of Time by Stephen Hawking is a bestseller and has sold over ten million copies (Paris, 2007) and Carl Sagan’s television series, Cosmos: A Personal Voyage, has been watched in over 60 countries by more than 500 million people (NASA, 2009).
In 2009 Willard S. Boyle and George E. Smith were awarded the Nobel Prize in Physics for the development of another device that would be widely used in industry. The sensors for image capture developed for astronomical images, known as Charge Coupled Devices (CCDs), were first used in astronomy in 1976. Within a very few years they had replaced film not only on telescopes, but also in many people’s personal cameras, webcams and mobile phones. The improvement and popularity of CCDs is attributed to NASA’s decision to use super-sensitive CCD technology on the Hubble Space Telescope (Kiger & English, 2011).
The first patents for techniques to detect gravitational radiation — produced when massive bodies accelerate — have been acquired by a company to help them determine the gravitational stability of underground oil reservoirs.
These developments have allowed CMOS sensors to achieve performance levels once reserved for CCD sensors, making them increasingly competitive in various applications.
cmos是什么
The Atacama Large Millimeter/submillimeter Array (ALMA), an international partnership of Europe, North America and East Asia in cooperation with the Republic of Chile, is the largest astronomical project in existence.
While CCD sensors are known for their high image quality and low noise levels, making them popular in high-end cameras, CMOS sensors offer lower power consumption, faster processing, and lower cost, making them suitable for a wide range of applications.
Modern CMOS technology has evolved greatly, offering cost advantages, low power consumption and faster signal processing capabilities that have enabled its widespread usage in various applications.
Some of the most useful examples of technology transfer between astronomy and industry include advances in imaging and communications. For example, a film called Kodak Technical Pan is used extensively by medical and industrial spectroscopists, industrial photographers, and artists, and was originally created so that solar astronomers could record the changes in the surface structure of the Sun. In addition, the development of Technical Pan — again driven by the requirements of astronomers — was used for several decades (until it was discontinued) to detect diseased crops and forests, in dentistry and medical diagnosis, and for probing layers of paintings to reveal forgeries (National Research Council, 1991).
Astronomy is particularly well suited to international collaboration due to the need to have telescopes in different places around the world, in order to see the whole sky. At least as far back as 1887 — when astronomers from around the world pooled their telescope images and made the first map of the whole sky — there have been international collaborations in astronomy and in 1920, the International Astronomical Union became the first international scientific union.
Digital photography for hobbyists and professionals can use both CMOS and CCD sensors in their digital camera, depending on the desired image quality and cost.
StarChild, StarChild: Dr. Carl Sagan, NASA, http://starchild.gsfc.nasa.gov/docs/StarChild/whos_who_level2/sagan.html October 2009
A gamma-ray spectrometer originally used to analyse lunar soil is now used as a non-invasive way to probe structural weakening of historical buildings or to look behind fragile mosaics, such as in St. Mark’s Basilica in Venice.
Gruman, J. B. 2011, Image Artifacts-Telescope and Camera Defects, http://stereo.gsfc.nasa.gov/artifacts/artifacts_camera.shtml, August 2013
For example, CCD sensors are typically more expensive than CMOS sensors, but they offer higher image quality and better low-light performance. On the other hand, CMOS sensors are more common.
Dr. Bill Wang, PhD notes, "The potential of CMOS is huge, similarly to AI. For example right now, AI is just beginning and there's no saying where AI will be in 10 years. Similarly, there's no saying where CMOS will be in 10 years."
CMOSsensor
A wealth of examples — many of which are outlined below — show how the study of astronomy contributes to technology, economy and society by constantly pushing for instruments, processes and software that are beyond our current capabilities.
The fruits of scientific and technological development in astronomy, especially in areas such as optics and electronics, have become essential to our day-to-day life, with applications such as personal computers, communication satellites, mobile phones, Global Positioning Systems, solar panels and Magnetic Resonance Imaging (MRI) scanners.
Along with these imaging techniques, astronomy has developed many programming languages that make image processing much easier, specifically IDL and IRAF. These languages are widely used for medical applications (Shasharina, 2005).
More subtle than these contributions to technology is the contribution that astronomy has made to our view of time. The first calendars were based on the movement of the Moon and even the way that we define a second is due to astronomy. The atomic clock, developed in 1955, was calibrated using astronomical Ephemeris Time — a former standard astronomical timescale adopted by the IAU in 1952. This led to the internationally agreed-upon re-definition of the second (Markowitz et al., 1958).
The aerospace sector shares most of its technology with astronomy — specifically in telescope and instrument hardware, imaging, and image-processing techniques.
There are other works that have contributed to answering the question “Why is astronomy important?” Dr. Robert Aitken, director of Lick Observatory, shows us that even in 1933 there was a need to justify our science, in his paper entitled The Use of Astronomy (Aitken, 1933). His last sentence summarizes his sentiment: “To give man ever more knowledge of the universe and to help him 'to learn humility and to know exaltation', that is the mission of astronomy.” More recently, C. Renée James wrote an article outlining the recent technological advances that we can thank astronomy for, such as GPS, medical imaging, and wireless internet (Renée James, 2012). In defence of radio astronomy, Dave Finley in Finley (2013) states, “In sum, astronomy has been a cornerstone of technological progress throughout history, has much to contribute in the future, and offers all humans a fundamental sense of our place in an unimaginably vast and exciting universe.”
Most digital photography done today are with cameras with CMOS sensors. But it's not uncommon to hear enthusiastic fawning over the imaging quality of their older CCD cameras.
By Marissa Rosenberg, Pedro Russo (EU-UNAWE, Leiden Observatory/Leiden University, The Netherlands), Georgia Bladon, Lars Lindberg Christensen (ESO, Germany)
Two oil companies, Texaco and BP, use IDL to analyse core samples around oil fields as well as for general petroleum research.
Although the study of astronomy has provided a wealth of tangible, monetary and technological gains, perhaps the most important aspect of astronomy is not one of economical measure. Astronomy has and continues to revolutionize our thinking on a worldwide scale. In the past, astronomy has been used to measure time, mark the seasons, and navigate the vast oceans. As one of the oldest sciences astronomy is part of every culture’s history and roots. It inspires us with beautiful images and promises answers to the big questions. It acts as a window into the immense size and complexity of space, putting Earth into perspective and promoting global citizenship and pride in our home planet.
High-resolution CMOS sensors have made significant strides in recent years, with some sensors boasting resolutions as high as 250 megapixels, rivaling those of CCD sensors. This increase in resolution has allowed manufacturers to create digital cameras and imaging systems with greater detail and clarity, further closing the gap between the image quality of CCD and CMOS sensors.
Astronomers developed a solar-blind photon counter — a device which can measure the particles of light from a source, during the day, without being overwhelmed by the particles coming from the Sun. This is now used to detect ultraviolet (UV) photons coming from the exhaust of a missile, allowing for a virtually false-alarm-free UV missile warning system. The same technology can also be used to detect toxic gases.
CMOS sensors are expected to continue dominating the market due to their lower cost, higher performance, and ongoing innovations. Advancements in CMOS technology, such as improvements in low-light sensitivity, dynamic range, and quantum efficiency, are making CMOS sensors increasingly competitive with CCD sensors in various applications.
Indeed, as CMOS sensor technology has evolved, a variety of advancements and innovations have emerged, including high-resolution sensors, improved low-light sensitivity and near-infrared (NIR) imaging, and enhanced dynamic range and quantum efficiency.
CCD sensors historically produced sharper images with less noise due to their analog charge transfer process. In comparison, the CMOS image sensor may have more noise because each pixel contains its own amplifier and ADC, generating additional noise in the output image.
Since the development of space-based telescopes, information acquisition for defence has shifted from using ground-based to aerial and space-based, techniques. Defence satellites are essentially telescopes pointed towards Earth and require identical technology and hardware to those used in their astronomical counterparts. In addition, processing satellite images uses the same software and processes as astronomical images.
CCD offers high sensitivity and precision, so a case could be made for utilizing it for surveillance systems as identification of subjects is paramount in these systems. On the other hand, CMOS sensors are advantageous for their low power consumption and cost, making them suitable for large-scale surveillance systems where cost and energy efficiency are critical factors. The additional CMOS sensor benefit of higher speed capture could be very helpful in surveillance cameras as well.
CMOS sensors offer a number of advantages over CCD sensors, including higher resolution, faster readout speeds, and lower power consumption. Additionally, CMOS sensors are more cost-effective than CCD sensors, making them an attractive option for many applications. As a result, CMOS sensors are becoming increasingly important.
A collaboration between a drug company and the Cambridge Automatic Plate Measuring Facility allows blood samples from leukaemia patients to be analysed faster and thus ensures more accurate changes in medication (National Research Council, 1991).
Machine vision and embedded vision systems utilized both CCD and CMOS sensors, but most inspection systems are phasing out CCD sensors for CMOS sensors. While CCD sensors are known for their high image quality and low noise, the camera lens of CCD setups commonly create lens distortions, which software has to correct for. CMOS sensors are becoming increasingly the dominant choice for machine vision applications due to their lower power consumption, faster processing, and higher scanning speed.
National Research Council 1991, Working Papers: Astronomy and Astrophysics Panel Reports, Washington, DC: The National Academies Press
Despite this drawback, CMOS sensors have gained widespread popularity due to their cost-effectiveness in manufacturing and their suitability for use in mobile devices, the most common application of image sensors globally. As CMOS technology continues to advance, its sensors are poised to play an increasingly significant role in various imaging applications.
When comparing CCD vs CMOS, it’s essential to consider their differences in image quality, power consumption, and speed. CCD sensors are generally known for producing higher-quality, low-noise images with increased light sensitivity. This made them an ideal choice for applications requiring high-quality images until recently.
The company General Motors uses the astronomy programming language Interactive Data Language (IDL) to analyse data from car crashes.
When asked to make a prediction, Dr. Wang suggested the advent of smart CMOS sensor modules capable of not only imaging, but even performing judgements and making decisions.
Robotics and warehouse automation often rely on CMOS sensors for their speed and low power consumption. These sensors are well suited for applications that require rapid processing and real-time imaging, such as object recognition, navigation, and automation tasks.
Many non-astronomers also engaged with astronomy during the International Year of Astronomy 2009 (IYA2009), the largest education and public outreach event in science. The IYA2009 reached upwards of eight hundred million people, through thousands of activities, in more than 148 countries (IAU, 2010).
Now, as our understanding of the world progresses, we find ourselves and our view of the world even more entwined with the stars. The discovery that the basic elements that we find in stars, and the gas and dust around them, are the same elements that make up our bodies has further deepened the connection between us and the cosmos. This connection touches our lives, and the awe it inspires is perhaps the reason that the beautiful images astronomy provides us with are so popular in today’s culture.
As CMOS sensors continue to improve in low-light sensitivity and dynamic range, they are expected to gain even more ground in astronomy and astrophotography applications.
CCD camera meaning
Scientific and technological achievements give a large competitive edge to any nation. Nations pride themselves on having the most efficient new technologies and race to achieve new scientific discoveries. But perhaps more important is the way that science can bring nations together, encouraging collaboration and creating a constant flow as researchers travel around the globe to work in international facilities.
Medical and scientific imaging have traditionally used CCD sensors due to their high sensitivity and low noise levels, making them ideal for applications that require high-quality images, such as microscopy and spectroscopy.
Although we live in a world faced with the many immediate problems of hunger, poverty, energy and global warming, we argue that astronomy has long term benefits that are equally as important to a civilized society. Several studies (see below) have told us that investing in science education, research and technology provides a great return — not only economically, but culturally and indirectly for the population in general — and has helped countries to face and overcome crises. The scientific and technological development of a country or region is closely linked to its human development index — a statistic that is a measure of life expectancy, education and income (Truman, 1949).
Image sensors are the heart of imaging, capturing our most cherished memories and securing our properties through surveillance systems alike. The decades old competition between imaging sensor tech: Charge Coupled Device (CCD) and Complementary Metal-Oxide-Semiconductor (CMOS) sensors, often referred to as “CCD vs CMOS,” has been a significant topic of discussion.
Mobile devices today predominantly use CMOS sensors due to their compact size and low power consumption. As mobile device cameras continue to improve in quality and functionality, the use of CMOS sensors in these devices, as well as in CMOS cameras, is expected to grow even further.
In the realm of communication, radio astronomy has provided a wealth of useful tools, devices, and data-processing methods. Many successful communications companies were originally founded by radio astronomers. The computer language FORTH was originally created to be used by the Kitt Peak 36-foot telescope and went on to provide the basis for a highly profitable company (Forth Inc.). It is now being used by FedEx worldwide for its tracking services.
As we look to the future of imaging, the decline of CCD technology and the rise of CMOS technology are becoming increasingly apparent. Manufacturers are focusing their efforts on improving CMOS, as it offers numerous advantages over CCD sensors, such as lower cost, higher performance, and ongoing innovations.
Software for processing satellite pictures taken from space is now helping medical researchers to establish a simple method to implement wide-scale screening for Alzheimer’s disease (ESA, 2013).
Clark, H. 2012, Modern-day cleanroom invented by Sandia physicist still used 50 years later, https://share.sandia.gov/news/resources/news_releases/cleanroom_50th, June 2013
Astronomy and related fields are at the forefront of science and technology; answering fundamental questions and driving innovation. It is for this reason that the International Astronomical Union’s (IAU) strategic plan for 2010–2020 has three main areas of focus: technology and skills; science and research; and culture and society.
CMOS offers faster processing and higher frame rates compared to their CCD counterparts, making them ideal for applications that require high-speed imaging, such as machine vision systems and robotics. This increased speed is due to the parallel processing capabilities of CMOS sensors, which allow for the rapid readout of electrical signals.
Kiger, P. & English, M. 2011, Top 10 NASA Inventions, http://www.howstuffworks.com/innovation/inventions/top-5-nasa-inventions.htm, June 2013
Until 2020, CCD sensors produced higher quality images with less noise than CMOS sensors. CCDs historically have also had a higher dynamic range and better color reproduction.
Meanwhile, CMOS sensors are generally more affordable, require less power consumption, have on chip functionality, have more integrability, are capable of more miniaturization, allow for higher speed imaging, avoid visual artifacts that CCD lenses traditionally have, have higher potential for technological advancements. For these reasons, most manufacturers have switched from CCD to CMOS.
However, advancements in CMOS have led to the production of CMOS image sensors with comparable image quality and performance, making them increasingly popular for medical and scientific imaging applications.
Technology designed to image X-rays in X-ray telescopes — which have to be designed differently from visible-light telescopes — is now used to monitor plasma fusion. If fusion — where two light atomic nuclei fuse to form a heavier nucleus — became possible to control, it could be the answer to safe, clean, energy.
Another area of progress in CMOS sensor technology is the improvement in dynamic range and quantum efficiency. Dynamic range, the range of light intensities that can be accurately captured by a sensor, has been steadily increasing in CMOS sensors, allowing them to capture images with greater contrast and detail.
In addition to the need to see the sky from different vantage points on Earth, building astronomical observatories on the ground and in space is extremely expensive. Therefore most of the current and planned observatories are owned by several nations. All of these collaborations have thus far been peaceful and successful. Some of the most notable being:
Furthermore, CMOS offers higher sensitivity to infrared wavelengths and lower power consumption, making them an increasingly popular choice for machine vision systems and other applications requiring rapid processing.
In the above text we have outlined both the tangible and intangible reasons that astronomy is an important part of society. Although we have focused mainly on the technology and knowledge transfer, perhaps the most important contribution is still the fact that astronomy makes us aware of how we fit into the vast Universe. The American astronomer Carl Sagan showed us one of astronomy’s simplest and most inspirational contributions to society in his book, The Pale Blue Dot:
CMOS technology is becoming the preferred choice for many applications due to its low power consumption, high speed, and scalability. Additionally, CMOS sensors are more compact and lightweight than CCD sensors, making them ideal for use with CCD sensors.
Other technologies important to everyday life that were originally developed for astronomy are listed below (National Research Council, 2010):
A low-energy X-ray scanner developed by NASA is currently used for outpatient surgery, sports injuries, and in third-world clinics. It has also been used by the US Food and Drugs Administration (FDA) to study whether certain pills had been contaminated (National Research Council, 1991).
Observations of stellar distributions on the sky — which are used to point and calibrate telescopes — are also used in aerospace engineering.
Truman, H. 1949, Inaugural Presidential Speech, http://www.trumanlibrary.org/whistlestop/50yr_archive/inagural20jan1949.htm, June 2013
Pursuing these questions is a fundamental part of being human, yet in today's world it has become increasingly important to be able to justify the pursuit of the answers. The difficulties in describing the importance of astronomy, and fundamental research in general, are well summarized by the following quote:
Several reports in the US (National Research Council, 2010) and Europe (Bode et al., 2008) indicate that the major contributions of astronomy are not just the technological and medical applications (technology transfer, see below), but a unique perspective that extends our horizons and helps us discover the grandeur of the Universe and our place within it. On a more pressing level, astronomy helps us study how to prolong the survival of our species. For example, it is critical to study the Sun’s influence on Earth’s climate and how it will affect weather, water levels etc. Only the study of the Sun and other stars can help us to understand these processes in their entirety. In addition, mapping the movement of all the objects in our Solar System, allows us to predict the potential threats to our planet from space. Such events could cause major changes to our world, as was clearly demonstrated by the meteorite impact in Chelyabinsk, Russia in 2013.
Bode, Cruz & Molster 2008, The ASTRONET Infrastructure Roadmap: A Strategic Plan for European Astronomy, http://www.eso.org/public/archives/books/pdfsm/book_0045.pdf, August 2013
The telecommunications company AT&T uses Image Reduction and Analysis Facility (IRAF) — a collection of software written at the National Optical Astronomy Observatory — to analyse computer systems and solid-state physics graphics.
Similarly, quantum efficiency, a measure of the sensor’s ability to convert light into electrical signals, has also improved, making CMOS sensors more efficient and sensitive to light.
Traditionally, CCD sensors have been the preferred choice for astronomy and astrophotography due to their high sensitivity to light and low noise levels. However, recent advancements in CMOS sensor technology have led to the development of sensors with comparable performance to CCD sensors, making them increasingly competitive in this field.
Dr. Bill Wang, PhD commented on the past few decades of change in imaging technology. Regarding CCD vs CMOS, he said: "Originally, CMOS had a lot of problems. The noise was higher. And then after decades of industrial experience, CMOS technology has evolved. A lot of the noise is reduced. The resolution keeps getting higher and higher. The speed keeps getting higher and higher. The speed of development is greater than CCD. CCD is already a matured technology with little room to improve. In the past, cellphones used external CCDs. But now every cellphone changed to CMOS. We used to use 320x240 pixels in imaging, now that has grown to more than 20 million pixels."
Hamaker, J. P., O’Sullivan, J. D. & Noordam J. D. 1977, Image sharpness, Fourier optics, and redundant-spacing interferometry, J. Opt. Soc. Am., 67(8), 1122–1123
The primary distinction between CCD vs CMOS lies in their method of generating an image from electrical signals. While the CMOS chip incorporates an amplifier in each pixel (which is why they're called active pixels), CCD sensors do not (which is why they're called passive pixels). This fundamental difference between the two technologies has led to the development of various applications and further advancements in the field of imaging.